
The Open Corpus Workbench (CWB)

CQPweb System Administrator’s Manual

— CQPweb Version 3.3.5 and above —

Andrew Hardie
http://cwb.sourceforge.net/

February 2021

Contents

1 Installing CQPweb 9

1.1 What you will need . 9

1.2 Your web browser . 9

1.3 Hardware requirements . 10

1.4 Installing the webscripts . 10

1.5 Setting up Corpus Workbench . 12

1.6 Setting up the Perl modules . 12

1.7 Setting up R . 13

1.8 Setting up PHP . 13

1.9 Setting up disk locations . 16

1.10 Extra security on disk locations . 16

1.10.1 AppArmor . 17

1.10.2 SELinux . 18

1.11 Setting up your webserver . 18

1.11.1 Overview . 18

1.11.2 Using HTTPS . 19

1.11.3 Specific webservers: Apache . 19

1.12 Setting up the SQL database . 21

1.12.1 Creating the database . 21

1.12.2 Known “gotchas” in SQL DB setup . 22

1.12.3 Using a separate computer for the SQL DB . 24

http://cwb.sourceforge.net/

CQPweb System Administrator’s Manual CONTENTS

1.12.4 The SQL daemon’s file access . 25

1.13 Creating a configuration file . 26

1.14 Completing setup . 27

2 The CQPweb Configuration File 28

2.1 About the configuration file . 28

2.2 Compulsory configuration variables . 29

2.3 Optional configuration variables: . 30

2.3.1 Locations of programs on the system . 30

2.3.2 Web daemon features (Apache etc.)) . 31

2.3.3 SQL database features (MySQL / MariaDB) 31

2.3.4 Memory, disk cache, and other hardware resource limits 32

2.3.5 Configuring the user interface . 33

2.3.6 Tweaking the look-and-feel . 35

2.3.7 User account creation . 37

2.3.8 User corpus system . 40

2.3.9 RSS feed control . 41

2.3.10 Error reporting . 41

2.3.11 Miscellaneous configuration options . 43

2.4 Using the auto-configuration script . 46

2.5 Using the configuration file framework . 47

2.6 Changes from earlier versions of CQPweb . 47

2.6.1 Changes in version 3.3 . 47

2.6.2 Changes in version 3.2 . 48

2.6.3 Changes in version 3.1 . 48

3 The System Administrator’s Interface 50

3.1 Introduction . 50

3.2 The Admin Control Panel: Feature list . 50

3.3 Corpus Admin Tools: Feature list . 52

3.3.1 Corpus settings . 52

3.3.2 Manage access . 53

3.3.3 Manage text metadata . 53

3.3.4 Manage text categories . 54

3.3.5 Manage corpus XML . 54

3.3.6 Manage annotation . 54

3.3.7 Manage parallel alignment . 54

© 2020 Andrew Hardie and contributors 2

CQPweb System Administrator’s Manual CONTENTS

3.3.8 Manage frequency lists . 54

3.3.9 Manage visualisations . 54

3.3.10 Add corpus data . 54

3.3.11 Corpus setup notes . 54

3.3.12 Cached queries . 54

3.3.13 Cached databases . 54

3.3.14 Cached frequency lists . 54

4 Managing the CQPweb data cache 55

4.1 Introduction . 55

4.2 Some background on the SQL system . 55

4.3 Explaining the different types of cached data . 58

4.4 Disk locations for stored data . 58

4.5 Moving the cache location on an existing CQPweb server 58

4.6 Optimising the SQL DB for cache performance . 58

4.7 User-data cache sizes . 59

4.8 Finding and fixing cache leaks . 59

5 Administering CQPweb from the command line 61

5.1 Introduction . 61

5.2 The main cqpweb script . 61

5.3 autoconfig.php . 62

5.4 autosetup.php . 62

5.5 cli-lib.php . 62

5.6 execute-cli.php . 63

5.7 force-innodb.php . 63

5.8 install-corpus.php . 63

5.9 load-pre-3.1-groups.php . 64

5.10 load-pre-3.1-privileges.php . 64

5.11 load-pre-3.2-corpsettings.php . 64

5.12 offline-freqlists.php . 64

5.13 upgrade-database.php . 65

6 Indexing corpora 66

6.1 Quick checklist . 66

6.2 Basic concepts . 66

6.3 The notion of a handle . 67

6.4 File format for corpus data input . 68

© 2020 Andrew Hardie and contributors 3

CQPweb System Administrator’s Manual CONTENTS

6.5 Linking handles and descriptions . 69

6.6 Annotation . 69

6.7 Annotation templates . 69

6.8 XML . 69

6.9 XML templates . 69

6.10 The indexing process . 69

6.11 Using a pre-indexed corpus . 69

6.12 The metadata setup process . 70

6.13 Building frequency lists . 70

6.14 Linking annotation to CEQL syntax notation . 70

6.15 Setting up corpus access rights . 70

6.16 Further corpus configuration . 70

6.17 Putting corpora into categories . 70

7 Metadata 72

7.1 Introduction . 72

7.2 Corpus metadata . 72

7.3 Text metadata . 72

7.4 XML metadata . 72

7.5 The different possible datatypes . 73

7.5.1 Free text . 73

7.5.2 Classification . 74

7.5.3 Unique ID . 74

7.5.4 ID link . 74

7.5.5 Date . 77

7.6 Metadata templates . 77

7.7 Matadata file format . 78

7.8 Installing metadata . 79

8 Parallel corpus data 80

8.1 Introduction . 80

8.2 Setting up parallel corpora . 80

8.3 Naming alignment attributes . 80

8.4 Creating alignment attributes . 81

8.5 Registering alignment attributes with CQPweb . 81

8.6 How alignment attributes can be used . 82

8.7 Parallel corpora and user privileges . 83

© 2020 Andrew Hardie and contributors 4

CQPweb System Administrator’s Manual CONTENTS

9 The Common Elementary Query Language (CEQL) 84

9.1 Introduction . 84

9.2 CEQL syntax: shorthand access to positional attributes 84

9.2.1 The primary annotation . 85

9.2.2 The secondary annotation . 85

9.2.3 The tertiary annotation . 85

9.2.4 A side note: the Oxford Simplified Tagset . 85

9.2.5 The combination annotation . 85

10 Controlling query visualisation 86

10.1 How the primary annotation affects visualisation . 86

10.2 Setting up an “alternate” view for context display . 86

10.3 Using position labels . 86

10.4 XML visualisations . 86

10.4.1 Introduction . 86

10.4.2 Creating and managing XML visualisations . 86

10.4.3 Conditional XML visualisations . 87

10.4.4 The embedded variable . 88

10.4.5 HTML allowed in XML visualisation code . 88

10.4.6 Extra code files . 90

10.4.7 Fallback visualisation methods . 93

10.5 Field data presentation mode . 93

10.6 Field data mode as a workaround for parallel corpora 93

11 User accounts and privileges 94

11.1 Basic concepts . 94

11.2 User accounts . 94

11.3 Viewing user account details . 96

11.4 User groups . 96

11.5 Privileges . 98

11.5.1 Corpus access privileges . 98

11.5.2 Frequency list privileges . 99

11.5.3 Extra runtime privileges . 99

11.5.4 Database privileges . 99

11.5.5 File upload privileges . 100

11.5.6 Upload-area filestore privileges . 100

11.5.7 The CQP binary file privilege . 100

© 2020 Andrew Hardie and contributors 5

CQPweb System Administrator’s Manual CONTENTS

11.5.8 Corpus installation privileges . 100

11.5.9 Creating and editing privileges . 101

11.6 Grants: creating and managing grants of privileges . 101

11.7 Running an open server . 102

11.8 Access to frequency lists . 102

12 Using plugins 104

12.1 What is a plugin? . 104

12.2 Types of plugin . 105

12.2.1 Annotators . 105

12.2.2 Format Checkers . 105

12.2.3 Script Switchers . 105

12.2.4 Corpus Analysers . 105

12.2.5 Corpus Installers . 106

12.2.6 Postprocessors . 106

12.2.7 Query Analyser . 106

12.2.8 Query Downloader . 106

12.2.9 CEQL Extender . 107

12.3 Installing plugins . 107

12.4 Registering plugins . 108

12.5 Permissions for plugins . 108

12.6 Creating plugins . 109

12.6.1 Introduction to writing plugins . 109

12.6.2 Naming your plugin . 110

12.6.3 Methods your plugin must implement . 111

12.6.4 Methods you can inherit . 114

12.6.5 An API for plugin writers . 116

12.7 Builtin plugins . 118

12.7.1 DeleteEveryThirdHit . 118

12.7.2 BasicTokeniser . 118

12.7.3 TreeTagger . 118

12.7.4 UcrelTagger . 119

12.7.5 BasicVrtInstaller . 119

12.7.6 SimplePlaintextInstaller . 119

12.7.7 StandardToolInstaller . 120

13 User corpora 121

13.1 Introduction . 121

© 2020 Andrew Hardie and contributors 6

CQPweb System Administrator’s Manual CONTENTS

14 Extensible CQPweb 122

14.1 Introduction . 122

14.2 Extending CQPweb with non-PHP modules . 122

14.2.1 Overview . 122

14.2.2 Perl . 122

14.2.3 Python . 122

14.2.4 R . 122

14.3 CQPweb Applications . 122

15 Using the CQPweb API 123

15.1 Introduction . 123

15.2 Structure of API HTTP requests . 123

15.3 Calling a function . 124

15.4 Parameters and types . 124

15.5 Structure of API HTTP responses . 125

15.6 Logging in and use of login tokens . 126

15.7 Available functions . 126

15.7.1 string get version(void) . 126

15.7.2 string get cwb version(void) . 126

15.7.3 array list api functions(void) . 126

15.7.4 string get api error info(int code) . 126

15.7.5 void log in(string username, string password [, bool persist]) 127

15.7.6 void log out(void) . 127

15.7.7 array fetch freqlist([int subcorpus, string annotation, string filter, string fil-
ter type, int freq max, int freq min, string sort]) 127

15.7.8 array fetch query history([int limit]) . 128

15.8 Roadmap for future functions . 128

15.9 The CQPweb Client . 129

16 Updating CQPweb 132

16.1 The update process . 132

16.2 Updating the database from very old versions . 132

16.3 Updating from version 3.0.16 to version 3.1.0 . 134

16.4 Updating from version 3.1.7 or earlier to version 3.1.8 or later 134

16.5 Updating from version 3.1.8 or earlier to version 3.1.9 or later 134

16.6 Updating to version 3.2.0 . 134

16.7 Updating to version 3.2.4 . 136

16.8 Updating to version 3.2.6 . 136

16.9 Updating to version 3.2.23 . 136

16.10Updating to version 3.2.32 . 136

16.11Updating to version 3.3.0 . 137

© 2020 Andrew Hardie and contributors 7

CQPweb System Administrator’s Manual CONTENTS

17 Glossary 138

© 2020 Andrew Hardie and contributors 8

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

1 Installing CQPweb

This chapter contains only the minimum amount of information you need to get CQPweb up and
running; it touches on many aspects of the system, but does not go into full detail. Further information
can be found in other sections of this manual.

1.1 What you will need

You’ll need a machine with a Unix-style operating system. CQPweb has been installed successfully,
to our knowledge, on Mac OS X; Sun OS; Debian; Ubuntu; SUSE; and Fedora.

Windows compatibility (for Windows 10) is planned but not yet achieved. For the moment, there are
two possible ways to run CQPweb on Windows:

With Cygwin. Install Cygwin, then install CQPweb, and all its dependencies, on top of Cygwin.

With the Windows Subsystem for Linux. Enable the WSL, then install a Linux distribution
such as Debian or Ubuntu via the Microsoft Store app. Then install CQPweb in that distribution.

Other software you need to have installed:

� Apache or some other web server

� MySQL (v5.0 at minimum, preferably v8.0 or higher) or MariaDB (version 10.0 or higher). Other
SQL DB systems, like MS-SQL, SQlite, or Postgresql, don’t work with CQPweb.

� PHP (version 7.3+).

� Corpus Workbench (see 1.5 for details)

� Optionally, Perl and the CWB-Perl modules (see 1.6 for details)

� R

� Optionally, standard Unix command-line tools accessible on the shell path: awk, sort and head;
either GNU versions, or versions compatible with them. See 2.3.11 for how to enable their use
if they are present and you wish to use them.

A word of warning: Installing CQPweb on a shared server where you do not have full control over
the setup can sometimes be problematic. For instance, as will be explained, there are certain options
(especially in PHP and MySQL/MariaDB) which need to be set in certain ways for CQPweb to work
properly. If you don’t have control over these settings, then it will be very difficult to get things
working properly. For instance, MySQL/MariaDB servers can be configured to block some of the
permissions that you will need to have - so if you can’t reconfigure those permissions you will not get
very far.

1.2 Your web browser

CQPweb uses modern web technologies. It may not work properly if accessed by means of an out-of-
date browser.

In particular, the browsers that are supported (in the sense that we’ll always do our best to make sure
the CQPweb interface works as intended in these browsers) are the following:

© 2020 Andrew Hardie and contributors 9

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

� Google Chrome, or the related Chromium browser.

� Mozilla Firefox.

� Microsoft Edge.

� Apple Safari.

Of course, browsers that share the rendering engine of one or other of the above will also be OK.

As of first quarter 2019 (CQPweb v3.2.32 and above) we no longer support Internet Explorer. We
now ignore any errors and issues reported from users of Internet Explorer.

You will need to use a suitable browser to access the administrative functions of CQPweb. Likewise,
the users of your server will need to access the site and perform their queries, etc., using an approved
browser.

1.3 Hardware requirements

It is difficult to generalise about what hardware you will need. Even a (relatively) low-powered
computer should be able to run CQPweb with small-to-medium sized corpora; a modern desktop
system should also be fine with pretty large corpora - as should most laptops as long as they have a
big enough hard drive (see below). As a general rule, having less-than-ideal hardware will cause things
to run slowly, rather than not run at all.

One potential bottleneck is working memory for big database operations. For very intensive operation,
the SQL DB (MySQL/MariaDB) requires lots of memory; if it can’t get enough RAM, it will use hard
disk space as temporary storage instead; if it uses up all available hard disk space, it will fall over
mid-operation, possibly with a very uninformative error message (e.g. saying that it can’t read from
or write to a particular temporary file). These “big database operations” tend to be aspects of the
corpus setup procedure - especially frequency table creation - rather than anything that a user who is
not an administrator can set in motion.〈〈

XREF to the CACHE chapter – section on disk space and advising on partitioning etc
〉〉

TODO

How much disk space precisely the SQL DB might need for some of CQPweb’s big setup procedures
is difficult to say for certain - it depends, apart from anything else, on how far the SQL daemon can
get just with RAM. However, as a rule of thumb, you should aim to run CQPweb’s SQL database on
a disk or partition which has free space equal to a multiple of the raw-text size of the corpus you are
working with. (This will also be more than enough for cache space and CWB indexes of your corpus,
if the cache and data directories are on the same disk or partition.)

For example, on one of the CQPweb development machines - a relatively modern server with plenty of
RAM - the SQL DB needed approximately 4 GB of temporary disk space for the process of building
frequency tables for a corpus whose raw text took up 1 GB. So if you are regularly dealing with corpora
of that size (on the order of 100,000,000 words), it is a good idea to have, say, ten times as much space
available as your raw text takes up.

1.4 Installing the webscripts

Download CQPweb by going to the CWB website (http://cwb.sourceforge.net/download.php#
gui) and doing one of the following:

� Get a release of CQPweb as a compressed download file, then decompress it. This will get you
a stable version of the program, but one that might be quite old. If your system does not have
Subversion installed on it, then this is the only option.

© 2020 Andrew Hardie and contributors 10

http://cwb.sourceforge.net/download.php#gui
http://cwb.sourceforge.net/download.php#gui

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

� Use Subversion to export a copy of the program from our code repository. You can get either
the trunk version (cutting-edge version, may contain bugs) or one of the older branches (may
lack recently added features but should have fewer bugs), as follows:

– svn export http://svn.code.sf.net/p/cwb/code/gui/cqpweb/trunk CQPweb

– svn export http://svn.code.sf.net/p/cwb/code/gui/cqpweb/branches/X.Y CQPweb

– (for a branch, replace “X.Y” with the version number of the branch you want; the CWB
website will indicate what branches are available/recommended).

� Use Subversion to check out a copy of the program. The difference between checking out and
exporting is that a checked-out copy can be automatically updated if the version in the repository
changes. This makes updating the system easy. This is, therefore, recommended. Again, you
can check out either the trunk or a branch.

– svn co http://svn.code.sf.net/p/cwb/code/gui/cqpweb/trunk CQPweb

– svn co http://svn.code.sf.net/p/cwb/code/gui/cqpweb/branches/X.Y CQPweb

When you first create it, the base CQPweb directory will contain several subdirectories, as follows:

adm Web-directory for the admin interface.

bin This directory contains scripts that can be run offline using command-line access to the machine
that CQPweb runs on. See chapter 5.

css Web-directory for stylesheets and other files related to the appearance of CQPweb.

doc Web-directory for manual files.

exe Web-directory for the corpus-query interface.

jsc Web-directory for client-side JavaScript code.

lib This directory contains the actual CQPweb code. CQPweb never runs from this directory, but all
the directories where it does run operate by calling the code found here.

rss Web-directory for the RSS feed, if enabled (see RSS-related configuration options in section 2.3).

usr Web-directory for the user account interface.

You should never rearrange the internal structure of these directories. It will break CQPweb if you
do so.

Once you have downloaded/exported/checked out CQPweb, move its base directory into your web
server’s document tree. Note that the location you choose for the web script directory will determine
the web address of your CQPweb installation relative to your webserver as a whole.

You may then need to adjust the ownership/permissions of the base directory and the files within it
to make sure that the user account your webserver runs under has access to it. See section 1.9 for
more information on this process.

© 2020 Andrew Hardie and contributors 11

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

1.5 Setting up Corpus Workbench

If you do not already have CWB on your system, you will need to install it before going further.

Instructions and links for installing the core CWB system can be found at http://cwb.sourceforge.
net/download.php.

You should install the most recent available version of CWB from the 3.4.x series. Older versions
do not work as well with CQPweb. As of CQPweb version 3.3.0, version 3.4.21 of the CWB core is
required. But ideally use the most recent version that you can.

When installing CWB, you have assorted options, some of which affect the location of the executables
once installed. The default location for the executables under Linux is /usr/local/bin, but it is
possible to install them elsewhere. Wherever they are, note that it will be important for CQPweb to
be able to find them. By default, CQPweb assumes these executables are on the PATH variable in the
environment the web server runs on. If this is not the case, then you can tell CQPweb explicitly where
to find the CWB executables using the $path_to_cwb variable in the configuration file (see 2.3).

1.6 Setting up the Perl modules

CQPweb does not require the CWB-Perl interface (although older versions used to). However, you
may wish to have this set of tools available. For instance, optionally, you can configure the system to
use the original Perl CEQL parser (rather than CQPweb’s builtin CEQL parser).

Instructions and links for installation of CWB-Perl can be found at http://cwb.sourceforge.net/

download.php#perl.

The package mostly relevant to CQPweb is the “base” CWB package, which includes CWB-CEQL.
You may wish to install other packages from the CWB-Perl API (CWB-CL, CWB-Web and CWB-
CQi) but these are of less direct utility with CQPweb.

If you wish to use the Perl CEQL parser, you need at least version 3.0.4 of the base CWB package.

Once you have downloaded the packages you want to install, you can find installation instructions in
each package’s README file.

� If you follow the standard instructions, the Perl module files will be copied into
a directory on Perl’s @INC path, such as /usr/local/lib/perl/{$version}/ or
/usr/lib/perl5/{$version}/, depending on the details of how Perl is set up on your system.

� Assuming you do install to this standard location, there is a known “gotcha” to be aware of:
when you update your system software to use a newer version of Perl, any modules in directories
whose path includes the old version number may no longer be detected. You will need either to
reinstall the modules, or else to move the modules across from the directory with the old version
number to the directory with the new version number.

� If for any reason you wish to set up CQPweb to use a different Perl binary to your system’s
default, you need to make sure the CWB modules are accessible to that Perl binary. If you don’t
understand the previous sentences, ignore the preceding paragraph and this one!

� If you install the Perl modules into a folder that is not in the normal Perl @INC path (which you
can do by specifying an alternative PREFIX), then you will need to tell CQPweb where they are.
You can do this by setting the option $perl_extra_directories in the configuration file (see
2.3).

© 2020 Andrew Hardie and contributors 12

http://cwb.sourceforge.net/download.php
http://cwb.sourceforge.net/download.php
http://cwb.sourceforge.net/download.php#perl
http://cwb.sourceforge.net/download.php#perl

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

1.7 Setting up R

There are no special considerations to note in relation to the R statistical software.

1.8 Setting up PHP

� CQPweb version 3.3 requires at least version 7.3 of PHP and preferably version 7.4.

� CQPweb version 3.4 will require PHP version 8.

PHP’s internal library of functions is divided into extensions. To run CQPweb, your PHP installation
needs the following extensions:

� The gd extension is needed if you want user-account creation to be protected by CAPTCHA.

� The intl extension is required

� The json extension is required

� The mbstring extension is required

� The mysqli extension is required (see further below)

� The phar extension is required

� The zlib extension is required

CQPweb normally uses the zlib extension for compressing and decompressing files. Other compression
methods can be provided as options if the relevant PHP extensions are available, although CQPweb
will run fine without them:

� The zip extension

� The bz2 extension

Depending on your operating system, the extensions listed above may be installed by default along with
PHP, or you may have to install them separately. On package-managed Linux systems, for instance,
it is common for extensions such as json and phar to be made available as separate packages, even
though they are provided by default with PHP when it is installed outside the package management
system.

This also applies to PHP’s Command Line Interface (CLI) program, that is, the php executable which
runs PHP scripts from within a terminal. In package-managed Linux, this may be absent by default
so that getting it requires a specific package to be installed (e.g. on Debian/Ubuntu, php-cli) even
though the CLI program is usually a builtin feature of PHP.

CQPweb requires this CLI program; to check whether it is installed and accessible, run the following
command:

� php -v

If the PHP CLI is installed and accessible, this command will print the program’s version number and
then exit.

The CLI can be used to check whether the extensions mentioned above are installed or not. For
example, to check for mbstring, use this command:

© 2020 Andrew Hardie and contributors 13

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

� php --ri mbstring

The output of this command is:

� If the extension is installed: a line with the name of the extension (here, mbstring), followed by
a block of configuration information (which you can ignore).

� If the extension is not installed: a one line message saying so; in this case, Extension ’mbstring’
not present.

CQPweb crucially requires PHP’s mysqli extension in order connect to the MySQL or MariaDB
database. Nearly all versions of PHP are almost certain to include mysqli. However, on many Linux
distributions (Debian-based or Fedora-based paticularly) you may need to select and install a specific
package to get mysqli. On other kinds of OS, including possibly on Windows, the mysqli extension
may be present but not enabled: in which case, it can be enabled by amending the php.ini file
(discussed in detail below).

In the unlikely event that your version of PHP does not have mysqli at all, the only fix is to recompile
PHP to add it. (It would probably be easier to reinstall PHP from a source that does include mysqli.)

If you are running CQPweb on the internet (i.e. not simply on a standalone computer), then CQPweb
needs to be able to send email via PHP’s mail() function. You can check whether this is working by
running the following command:

� php -r "mail('you@somewhere.net', 'it works...','Yes it works.');"

(obviously using your real email address). If you get an email, then PHP can indeed use the mail()

function. If not, you need to reconfigure your system to allow PHP to send email. It’s beyond the
scope of this manual to explain how to do this; the PHP manual has quite a lot of information
(http://php.net/mail) and more can be found via web search.

Certain aspects of the behaviour of PHP are controlled by its php.ini file (see http://php.net/

configuration.file, http://php.net/ini). Your system may have several files with this name, for
different environments; you need to find the one used when PHP is run via your web server, as well
as the one used when PHP is run as a command-line program (i.e. CLI). On Debian systems, for
instance, the php.ini files for the Apache web server and for the CLI are respectively:

� /etc/php/7.3/apache2/php.ini

� /etc/php/7.3/cli/php.ini

If you don’t know where to look, then on a Unix-like system, /etc/php is usually a good place to
start. On Windows, php.ini can normally be found in the folder in which you installed PHP.

The CLI php.ini does not need to be adjusted for the settings that apply only to a web environment
(e.g. post_max_size, see below). But there are some settings (e.g. mysqli.allow_local_infile,
see below) which need to be adjusted in both the CLI and web server environments’ php.ini files.

� One known “gotcha” on Apple Mac OS X is that the php.ini file may not exist; in this case,
there should be a php.ini.default file which you can copy into the correct directory (under
the name php.ini) and then amend if need be.

© 2020 Andrew Hardie and contributors 14

http://php.net/mail
http://php.net/configuration.file
http://php.net/configuration.file
http://php.net/ini

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

The precise settings in the php.ini file(s) may be different depending on how you installed PHP
(or your system administrator may have subsequently adjusted them). Most of them do not affect
CQPweb.

However, four directives set limits on PHP’s use of system resources, and CQPweb has been written
on the assumption that these directives are set to at least moderately generous values; if your system’s
settings are much less than these, you may have problems. The directives in question are as follows:

� upload_max_filesize needs to be quite high if you want to upload corpus files for indexing
over HTTP; we recommend 80M (for files larger than that relying on HTTP is probably a bad
idea anyway)

� post_max_size needs to be at least as high as upload_max_filesize

� memory_limit should be generous as some CQPweb operations are RAM-intensive (e.g. building
subcorpus definitions in memory); a reasonable starting point would be 128M (but if the default
in your system is higher than that, keep the higher value!), while bearing in mind that certain
types of corpora - for instance, those with complex XML structure - may need more RAM for
common operations, e.g. 512M.

� max_execution_time should be generous as well; we suggest 60

In addition, there is another directive that has the potential to stop many CQPweb functions from
working. This is mysqli.allow_local_infile.

� When this directive is switched off (set to "0"), the mysqli extension cannot run commands of
the form LOAD DATA LOCAL INFILE... .

� In PHP versions 7.0 to 7.2.15, and 7.3.0 to 7.3.2, the default was "1", that is, to allow by default.

� In PHP versions PHP 7.2.16 onwards, and 7.3.3 onwards, the default became "0", that is, to
disable by default.

� It is possible to run CQPweb without using LOAD DATA LOCAL INFILE... by means of the
configuration setting $sql_local_infile_disabled (see 1.12.2, 2.3.3.

� But it is usually a better idea to change mysqli.allow_local_infile to "1" in php.ini, as
other problems may arise when LOAD DATA LOCAL INFILE ... is not used.

Once CQPweb is up and running, the values of all PHP settings can be checked by looking at “PHP
configuration” in the Admin control panel. You can also find out the location of the active php.ini

file from this screen.

If you are running a version of PHP with the Suhosin patch (which comes by default in some Linux
distributions) then there is an additional “gotcha” to look out for. This is that a limit is placed on the
length of individual values in an HTTP request - 512 bytes by default. This can result in CQPweb
pages failing to work if this limit is not sufficient for certain parameters. If you have Suhosin and you
want to be sure of not running into this problem, you need to add the following line to php.ini:

� suhosin.get.max_value_length = 8000

However, even with this limit increase, users may have trouble with very long queries, since different
browsers may impose alternative, lower limits on HTTP request values.

© 2020 Andrew Hardie and contributors 15

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

1.9 Setting up disk locations

As well as the location of the web scripts themselves, CQPweb needs you to allocate four other
directories for its use. These are used for the following purposes:

1. CWB corpus index files

2. CWB registry files

3. Temporary files (including the query cache)

4. Files uploaded into the system by users

All four of these directories should be outside your webserver’s document tree so they are not exposed
to the world. Once you have created them, you should leave them exclusively to CQPweb; no one else
should add, amend or delete files in any of the four directories.

You will need to enter the paths to these directories in the configuration file: see section 1.13.

If you also use CWB and CQP from the command line on the same machine that is running CQPweb,
then it’s worth noting that the locations you choose for the CWB index data and registry do not need
to be the same as the ones used normally by command-line CQP. CWB has, compiled into it, a default
registry path, but CQPweb does not use that directory.

The username of the webserver process needs to have full read-write-execute access to all four direc-
tories. The username of the mysqld process also needs read and write access to the third and fourth
(temporary/upload) directories if you want the SQL DB to use file-access functions, as described in
1.12.4.

The easiest way to accomplish this is to give read-write-execute permissions on these folders to “all”,
or - if you are worried about security - to “group” (where the file is assigned to some group that both
the SQL DB server’s account and the web server’s account belong to).

How to work out the usernames of the server programs: For mysqld, the username is usually mysql.
For the Apache webserver (process name something like httpd or apache2) it is usually something like
apache or www or www-data. To find out for certain, run the following command (in this example, for
mysqld):

� ps -e -o user,comm | grep mysqld

... and the first word on the output line will be the username you want.

1.10 Extra security on disk locations

A “gotcha” can occur when creating the directories discussed above in systems that have extra security
software installed. These systems limit the areas of the filesystem that server programs like Apache
or mysqld can access - blocking access to anything outside the designated areas, even if the server has
all the necessary filesystem permissions.

The two systems of this type that are often encountered on Linux are AppArmor and SELinux.

© 2020 Andrew Hardie and contributors 16

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

1.10.1 AppArmor

AppArmor is widely used in the Ubuntu and Debian flavours of Linux. In fact, it may be automatically
installed and enabled on these types of system.

AppArmor works by blocking file access to programs that it thinks ought not to be manipulating a
particular directory, even if the user account the program is running with has all the proper permissions.
If your system is configured to apply AppArmor restrictions to your SQL DB’s daemon program,
that is, mysqld, the result will be that the daemon will only be able to access files in the parts of
the filesystem that AppArmor has explicitly let it access. This will often not include the CQPweb
data directories you have created! And if AppArmor blocks mysqld from accessing to the CQPweb
directories, you will not be able to run CQPweb.

Many versions of Debian and Ubuntu will configure AppArmor so that it restricts mysqld by default.
However, recent versions of MariaDB block this action (as noted above, MariaDB’s daemon is called
mysqld just like MySQL’s daemon) so if you are using MariaDB you may find that its AppArmor
configuration file contains only comment lines.

If AppArmor does affect your mysqld, the solution is to add exceptions to AppArmor’s configuration
file for mysqld. In the systems we have seen this on, the file to edit is:

� /etc/apparmor.d/usr.sbin.mysqld

This file contains the “profile” AppArmor applies to the MySQL/MariaDB daemon. Its filename
represents the path to the executable whose filesystem access is being restricted. You will normally
need to be root to edit the AppArmor configuration files (su or sudo).

Before the closing brace in this file, add a line like the following for each CQPweb directory:

� /path/to/the/directory/in/question/** rw,

Then restart AppArmor with one of these two commands (for systems that use SysV init and
systemd respectively):

� sudo /etc/init.d/apparmor restart

� sudo systemctl restart apparmor.service

If there is no AppArmor configuration file for mysqld, or if there is a file but it contains nothing or only
comment lines starting in #, then AppArmor is not enabled for your mysqld ; if you are experiencing
problems nevertheless, they have some other cause.

The alternative approach to dealing with AppArmor is simply to disable it. Only do this if you do
not need the extra security it supplies. To disable the mysqld profile:

� sudo aa-disable /etc/apparmor.d/usr.sbin.mysqld

To completely disable AppArmor, use the following commands (note, these commands work if you
have a systemd-based Linux; other kinds of OS will have other ways to manage services):

� sudo systemctl stop apparmor

� sudo systemctl disable apparmor

To uninstall AppArmor (on Debian or Ubuntu; other Linux versions may be different):

� sudo apt remove --purge apparmor

© 2020 Andrew Hardie and contributors 17

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

1.10.2 SELinux

SELinux (https://selinuxproject.org/) works differently from AppArmor but can have the same
effect of blocking a program’s access to files and directories that the program’s username has filesys-
tem permissions to read and/or edit. If enabled, SELinux may block Apache (and possibly also
MySQL/MariaDB) from accessing/modifying your CQPweb disk locations.

Rather than editing a configuration file, telling SELinux to allow a given program access to a given
folder is done via a pair of command-line utilities: semanage fcontext and restorecon. Please
consult the SELinux documentation for full information. However, the following commands should
work to prevent Apache from being blocked in most circumstances:

� semanage fcontext -a -t httpd_sys_rw_content_t "/path/to/directory(/.*)?"

� restorecon -R -v path/to/directory

The first of the commands above adds a “file context” for the path specified which makes the directory,
and files/subdirectories, available to Apache for read and write. The second reloads the context for
that path so that your added file context will take effect.

1.11 Setting up your webserver

1.11.1 Overview

There are three things that you need to make sure are configured in your webserver:

� It must be configured so that files with the .php extension are run as PHP (whether via CGI or
via a module like Apache’s mod php). This is the default on most webservers.

� It must be configured so that a file named index.html or index.php is served as the default
when the address of a directory is accessed (so http://my.server.net/directory produces
the same as http://my.server.net/directory/index.php). This is also usually the default
situation.

� It must allow symbolic links in URLs. CQPweb corpora are addressed via URLs of the gen-
eral form http://my.server.net/CQPweb/corpus, but the actual entry for corpus within the
CQPweb web-directory is implemented as a symbolic link, not an actual directory.

Other steps that are not necessary, but that might be useful, include the following:

� Block HTTP access to the bin and lib subdirectories of the CQPweb base directory.

� Turn off the use of .htaccess files (Apache webserver only).

� Set up your webserver to use HTTPS instead of HTTP for CQPweb.

These are discussed in further detail below.

© 2020 Andrew Hardie and contributors 18

https://selinuxproject.org/

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

1.11.2 Using HTTPS

HTTP is the format used by web browsers and servers to talk to one another. HTTPS is a variant of
HTTP where all this communication back and forth is encrypted. So, while a snooper on an HTTP
link can see what the browser and server are saying to one another, when the link is HTTPS, that
can’t happen.

It is always preferable to run CQPweb on an HTTPS server:

� Some of your data may be confidential or restricted.

� You need to protect your users’ private data (in some jurisdictions this may be a legal duty).

� Users tend to reuse their account credentials (usernames and passwords), even when instructed
not to. A user’s CQPweb account could be considered low-importance, but it is 100% possible
that some users have reused a password that they also use for internet banking or their email
account or other high-importance credentials. If you let users connect to CQPweb via HTTP,
their password is sent to the server unencrypted and can easily be seen and stolen. Using HTTPS
protects users from this danger.

(This doesn’t apply to running CQPweb on a single computer, of course. HTTP is fine for that.)

As with all else, the precise details of how you configure a web server to use HTTPS rather than HTTP
vary from webserver to webserver. You will need to look at the documentation of your webserver.〈〈

examples – Apache.
〉〉

TODO

1.11.3 Specific webservers: Apache

Since Apache is the most commonly used webserver on Unix systems, we have accumulated more
experience on installing CQPweb alongside Apache than any other server. Indeed, older versions of
CQPweb actually relied on Apache for username/password checks (this was changed in version 3.1).
The notes in this section outline some of the most common points of Apache configuration that are
important for CQPweb.

Apache configuration is a rather complex topic, and cannot be dealt with in full here (see https:

//httpd.apache.org/docs/). In particular, note that it is impossible to say here specifically what
Apache configuration files you need to edit to adjust how Apache treats CQPweb, since this can differ
drastically from system to system; especially if you are on Linux, a lot depends on how your distro
has decided to package Apache: see http://wiki.apache.org/httpd/DistrosDefaultLayout.

However, here is some general advice.

Apache’s behaviour is controlled by various configuration directives. These directives can be given in
the main configuration file, or they can be given in .htaccess files that may optionally be added to
each directory in Apache’s document tree.

If you change an Apache configuration file, you will need to restart the webserver process for the
changes to have effect. This is not necessary if you are using .htaccess files.

In versions of CQPweb earlier than 3.1, .htaccess files were used to control user access to corpora.
More recent versions do not use or reply on .htaccess files at all.

The only directories to which it is necessary to control access are the bin and lib subdirectories of
the base CQPweb directory. This can be done with .htaccess files, but it is better done in one of the
main Apache configuration files. That way, the directives are loaded only once (when Apache starts

© 2020 Andrew Hardie and contributors 19

https://httpd.apache.org/docs/
https://httpd.apache.org/docs/
http://wiki.apache.org/httpd/DistrosDefaultLayout

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

up), and not every time the server is accessed (which is what happens when .htaccess files are used,
meaning multiple extra disk-reads are required).

The directive which turns on the use of .htaccess files is:

� AllowOverride All

Conversely, the directive that turns it off is:

� AllowOverride None

In Apache’s configuration file, this directive may be given globally, or within a <Directory> directive.
You can create a separate <Directory> block for the directory where CQPweb lives, or you can adjust
the settings for a higher-level directory, if that will not interfere with other uses of the webserver.

Similarly, you need to make sure that Apache is set to follow symbolic links in URLs (for reasons ex-
plained in 1.11). This is enabled by default, but it’s advisable to declare it explicitly (because otherwise
you are dependent on this setting not being affected by changes elsewhere in the Apache configura-
tion). This must be done within a <Directory> directive, or in a .htaccess file; the declaration is as
follows:

� Options FollowSymlinks

(with other Options values added as required).

Putting all the above together, a typical <Directory> block for the CQPweb directory would be:

<Directory /path/to/cqpweb>

AllowOverride None

Options FollowSymlinks

</Directory>

<Directory /path/to/cqpweb/bin>

deny from all

</Directory>

<Directory /path/to/cqpweb/lib>

deny from all

</Directory>

Note that the “/path/to/cqpweb” that you need to give is an absolute path on your filesystem (it is
not relative to the root of the web document tree).

If you cannot change the Apache configuration file, then to achieve the above, you’d need to use
.htaccess files (assuming they are enabled).

First create two identical files (bin/.htaccess and lib/.htaccess), each containing just the following
directive:

deny from all

Then add an .htaccess file in the CQPweb main web directory which switches on the FollowSymlinks
option using an Options declaration line:

Options FollowSymlinks

© 2020 Andrew Hardie and contributors 20

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

There are, of course, many more things you can do with Apache to tweak how CQPweb is accessed.
For example, you can add Apache-internal password authentication. However, if you do this, the
Apache authentication will be separate from and additional to CQPweb’s own system of usernames
and passwords.

Finally: there are some known “gotchas” in Apache’s behaviour under certain configurations. The
best approach is not worry about the following until and unless the problems as described happen in
your installation!

� Sometimes, Apache will happily serve up the builtin pages (e.g. the admin area) but then
give you an “Internal Server Error” when you try to access the pages created during a corpus
installation. This appears to be because these files are created with 0664 permissions (group-
writeable, world-readable).

– To fix the problem for an already indexed corpus, open a terminal to the directory containing
its script files (index.php, concordance.php, etc.) and run sudo chmod 644 *.php .

– To prevent the problem from recurring, edit the code file lib/admin-install.inc.php and
change all instances of chmod() where the mode is set to 0664 to set it to 0644 instead.

– This problem should not occur in current versions of CQPweb, which use symlinks per
corpus instead of code files per corpus.

� The PATH environment variable (i.e. the list of locations where Apache will look for executables,
if their precise location is not specified) may present a “gotcha”. The PATH as seen by scripts
running under Apache is not necessarily the same as the PATH that is available in the login-shell
environment of the username Apache runs under. This is because Apache has its own internal
system for setting environment variables, using its SetEnv directive and related functionality. If
CQPweb is having trouble finding the CWB executables, or any other external program such as
R, it may be because the PATH variable as seen from within scripts running under Apache does
not contain their location. This problem is easily overcome by setting the variable $path_to_cwb
in the CQPweb configuration file (see 2.3).

1.12 Setting up the SQL database

1.12.1 Creating the database

CQPweb uses an SQL database (MySQL/MariaDB) to store most of its ancillary data - that is,
everything other than the actual CWB index data.

You will probably need “root” access to the SQL daemon in order to set it up. The following instruc-
tions are based on the assumption you are accessing the SQL DB via its command-line client program,
but it is also possible to use your preferred graphical interface, of course.

First, you must create a new user and a new database for CQPweb to use. The name of the user and
the database can be anything you like; for the sake of the example commands in this section we will
assume that they are cqpweb db and cqpweb user respectively.

The required SQL commands are as follows:

� create database cqpweb db character set utf8mb4;

� create user cqpweb user identified by 'cqpweb password';

© 2020 Andrew Hardie and contributors 21

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

Naturally, instead of “cqpweb user”, “cqpweb password”, etc. use the actual username and password
that you want the user to have. This username/password combination will be stored in an insecure
location, so make sure that you do not reuse either an account name or a password that you know to
be used for any other purpose on your system.

You should never use your personal SQL username for CQPweb’s SQL connection.

Having created the user, we must now give it all permissions over the database. If you want the SQL
DB to use file-access functions, the new user also needs to be granted the file permission, which is
set once and for all, rather than at the level of the database. File-access permission is not strictly
necessary, but can help speed things up; it can also be useful if the LOAD DATA LOCAL INFILE command
is disabled (see 1.12.2 and 1.12.4 below). Finally, the new user can optionally be granted the process
permission, which is another once-and-for-all permission; if CQPweb has this permission, it is able to
generate and display more reliable statistics about database file sizes. The commands are respectively:

� grant all on cqpweb db.* to cqpweb user;

� grant file on *.* to cqpweb user;

� grant process on *.* to cqpweb user;

Make a note of the username and password you have used, and of the database name; you will need
them for configuration of your CQPweb installation. Also make a note of the server name needed to
access the SQL daemon from PHP. This will probably be localhost, assuming that the SQL daemon
is on the same machine as CQPweb itself (but see 1.12.3 below).

1.12.2 Known “gotchas” in SQL DB setup

� Local infile permission: MySQL/MariaDB can be configured to disable the LOAD DATA LOCAL

INFILE command as a security measure – see https://dev.mysql.com/doc/refman/8.0/en/

load-data-local.html . This configuration will stop CQPweb working (you will be able to tell
this is happening because you will get the error message “ERROR 1148: The used command is
not allowed with this MySQL version” when you attempt to set up the metadata for a corpus).

(This is basically the same thing as the problem mentioned above with PHP’s
mysqli.allow_local_infile setting, but in this case, the ban on this command is imposed
from the database daemon rather than from PHP’s interface.)

The preferred way to fix this problem is as follows:

– Edit the MySQL/MariaDB configuration file (usually something like /etc/my.cnf or
/etc/mysql/my.cnf depending on your operating system; some Linux variants have en-
tire folders of configuration files, allowing you to add a file of tweaks rather than modify
the existing configuration).

– Find the line which deactivates the local infile feature.

– It will be something like local infile=OFF, local-infile=0, or
set-variable=local-infile=0

– (or, it might be absent altogether, in which case, you need to add that line)

– Change the 0 to 1 (or OFF to ON)

– Restart the SQL daemon.

© 2020 Andrew Hardie and contributors 22

https://dev.mysql.com/doc/refman/8.0/en/load-data-local.html
https://dev.mysql.com/doc/refman/8.0/en/load-data-local.html

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

– Note: The local infile feature can be switched on/off separately for the daemon and for
any connecting clients; so you may need to amend (or add) the setting as described above
twice, in both the [mysqld] section of the configuration and the [client] section. If the
problem persists after inserting local infile=ON, the reason is probably that only one of
the daemon and client settings has been affected, and you need to amend the other.

Alternatively, the problem will be fixed if you set the CQPweb configuration variable
$sql_has_file_access to true, because when you do this, the LOAD DATA LOCAL INFILE com-
mand is never used. But there are requirements that must be satisfied to use this option – see
1.12.4 below.

If you can neither change the SQL DB’s configuration, nor meet the requirements for
$sql_has_file_access, there is yet a third way to solve the problem: set the CQPweb config-
uration variable $sql_local_infile_disabled to true. This makes CQPweb avoid the LOAD

DATA LOCAL INFILE command unconditionally. Be warned - doing this should fix things, but is
likely to be a major performance hit.

� File privilege with restricted scope: It is possible to limit the SQL daemon so that
INFILE/OUTFILE commands only affect a specific area of the machine’s filesystem. This is done
via a setting called secure file priv.

If secure file priv is set, then the daemon can only read/write files in the directory that it
specifies. This can stop CQPweb from working. There are three ways to fix this problem.

– Use the folder specified by secure file priv as your temporary files directory.

* (See 1.9 on the temporary files location).

* This solution will not be possible if your SQL daemon is not solely devoted to CQPweb.

– Change the secure file priv option to specify the location of your temporary files direc-
tory.

* Edit the MySQL/MariaDB configuration file (usually called my.cnf, see above).

* Find the line which sets this variable (it will look like secure file priv=/some/path

or secure-file-priv=/some/path) and change the path.

* Restart the SQL daemon.

* Again, this not practical unless your SQL daemon is solely devoted to CQPweb.

– Switch off the secure file priv functionality entirely.

* Find the right line of the MySQL/MariaDB configuration file, as per above.

* Change the path to an empty string - so the line looks like this: secure file priv=""

* Restart the SQL daemon.

* This solution does work if your SQL daemon is not solely devoted to CQPweb. It is
the preferred and recommended solution. However, it does have the disadvantage
of removing a security measure.

If you are using a shared server and you are not able to change the MySQL configuration, the
only remaining option is to stop CQPweb from using the INFILE/OUTFILE commands by setting
the CQPweb configuration variable $sql_has_file_access to false.

A further “gotcha”: prior to about 2015/2016, the default value for secure file priv was
the empty string. But MySQL was changed so that this value now defaults to an OS-specific
secure path. If you have no secure file priv in your my.cnf file, then things will work fine
in older versions of MySQL (because the security feature defaults to being switched off) but in
newer versions, CQPweb won’t work. If you find that features of CQPweb such as collocations,
distribution, and so on stop working after a MySQL upgrade, the problem is probably that the

© 2020 Andrew Hardie and contributors 23

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

default value of secure file priv has changed. In this case, instead of changing the value of
secure file priv, to fix the problem you need to add a line secure file priv="" to your
my.cnf file to restore what was previously the default state.

It’s unknown whether this issue affects MariaDB as well as MySQL.

� PHP’s connection to the SQL DB: PHP does not differentiate MySQL and MariaDB; both
are simply treated as “mysql”. PHP needs to know how to connect to the SQL daemon via a
socket in the filesystem. This information is often contained in the php.ini file, which contains
settings that PHP will load when it starts up. On many systems, connecting to the SQL daemon
simply “works” by default, but on some systems you may need to edit your php.ini file to tell
PHP where to find the socket, by changing the mysql.default socket setting. For instance,
if your socket is at /tmp/mysql.sock but PHP is looking at /var/mysql/mysql.sock, you need
to adjust mysql.default socket to /tmp/mysql.sock. If you edit a php.ini file, make sure it
is the one used when PHP is run by the server (whether as CGI or as a module of the webserver
itself).

� Database binary logging: Binary logging is a MySQL/MariaDB feature that can be enabled or
disabled, as explained here: https://dev.mysql.com/doc/refman/8.0/en/binary-log.html.
If enabled, even light use of a CQPweb installation will make the SQL DB create very large
binary log files, ultimately using up all your disk space over time. For this reason, it’s rec-
ommended that you disable binary logging on the SQL daemon used by CQPweb. You
can disable binary logging as explained here: https://dev.mysql.com/doc/refman/8.0/en/

replication-options-binary-log.html. In brief, this is done by commenting out or delet-
ing the line containing the log bin command in the MySQL/MariaDB configuration file, or
removing the equivalent --log-bin[=base name] directive from the command line that starts
up mysqld. (In either case you’ll need to restart mysqld.)

1.12.3 Using a separate computer for the SQL DB

We normally assume that the SQL daemon runs on the same machine as the CQPweb system itself.
But it does not have to.

You might want to use two separate machines for the CWB-based and SQL-based parts of CQPweb,
for reasons of performance (for a big corpus and for queries with lots of results, both the SQL DB and
CWB require lots of disk space, disk read/write bandwidth, and processing power).

In this case, CQPweb itself (the web scripts) should be on the same system as CWB, and the SQL
daemon on a separate system. This affects how you configure CQPweb as follows:

� You will need to insert the correct hostname (or IP address) for your SQL daemon’s machine
into the configuration file for CQPweb, instead of the (normal) localhost value. See section
2.2.

� Any configuration variable that involves a path to a temporary-storage directory or to the loca-
tion of a program (see 2.2) needs to refer to the machine with CQPweb on it, not the machine
with the SQL daemon on it.

� The optional variable (see 2.3) $sql_has_file_access can only be set to true if the paths to
the temporary-storage directories are the same on both systems (e.g. if they are mounted to
the same location). The system cannot check this for you! This is explained in more detail in
1.12.4 below.

© 2020 Andrew Hardie and contributors 24

https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

You will need to make sure that your SQL machine is configured to allow network traffic through the
port that your SQL daemon is using. How this is done depends on the operating system and firewall
software on that machine. Under Linux, you would use a utility such as iptables or the more modern
nftables to modify the operation of the Linux firewall.

The SQL daemon mysqld usually listens on port 3306, but this can be changed in the MySQL/MariaDB
configuration file: if in doubt, check! (The SQL command SHOW VARIABLES WHERE Variable name =

’port’ will tell you.)

� If the CQPweb system is the only user of the SQL machine, then for security it makes sense only
to open up the port for traffic coming from the IP address of the main CQPweb machine.

� On Linux, it is possible for the firewall to redirect data arriving on other ports to port 3306. So
in that case it would not be port 3306 that you would open.

An additional security measure you can implement when creating the CQPweb user in
MySQL/MariaDB is to link that account to the particular IP address of the CQPweb machine. The
format for this is as follows:

� create user 'cqpweb user'@'111.222.333.444' identified by 'cqpweb password';

� grant all on cqpweb.* TO 'cqpweb user'@'111.222.333.444';

... instead of the form given above - with the correct IP instead of “111.222.333.444”, of course. When
you create the account in this way, only login attempts from the specified IP will be accepted.

1.12.4 The SQL daemon’s file access

General note: The issues relating to the SQL daemon’s file access have been discussed in multiple
sections of this chapter, where relevant; this section contains an overview.

Many CQPweb operations involve transferring data into the SQL DB from files in CQPweb’s directories
(or, conversely, from the database to such files). Specifically, of the directories discussed in section 1.9,
the temporary-files location and the uploaded-files location, including any subdirectories, are used in
this way.

There are three ways that file data can be transferred between CQPweb and the SQL daemon. In
descending order of speed, these are:

� The SQL daemon reads the file directly, using the SQL command LOAD DATA INFILE.

� PHP’s mysqli client module transmits the file to the daemon, using the SQL command LOAD

DATA LOCAL INFILE.

� CQPweb reads the file incrementally and passes its content to the daemon in small chunks. No
LOAD DATA command is used.

By default, CQPweb is configured to use the second of these methods. This requires the creation of
a temporary copy of the file for use by the SQL daemon, which is by definition slower than the server
directly accessing the existing file. However, the difference in performance is not huge.

In order for the first method to work, the SQL daemon must be able to access the two directory
locations mentioned above. This requires certain preconditions to be fulfilled.

If the daemon is running on the same computer as CQPweb, the preconditions for the SQL-daemon-
file-access method are:

© 2020 Andrew Hardie and contributors 25

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

� the SQL daemon (or, to be precise, the OS user account it runs under) must actually have access
to the two directories (see 1.9 for how to make sure of this).

� the SQL user account used by CQPweb must have GRANT FILE ON *.* permissions (see 1.12.1
for more detail on this point).

If the SQL daemon is running on a different computer (see 1.12.3), the preconditions for the SQL-
daemon-file-access method are:

� the two directories in question must be accessible on the machine the SQL daemon runs on (e.g.
by mounting them as remote drives).

� the two directories must be reachable using the same paths on the SQL daemon’s machine as on
the CQPweb machine (i.e. use the same path for the mount point, or use a symbolic link).

� the SQL daemon (or, to be precise, the OS user account it runs under) must actually have access
to the two directories - as per above.

� the SQL user account used by CQPweb must have GRANT FILE ON *.* permissions - as per
above.

To explain the first two points in a little more detail, let’s say that, for example, the temporary-
files directory is located at /var/cqpweb/temp on the main CQPweb machine. In order for the
SQL daemon to be able to access files in this folder, first, the same underlying disk location must
be accessible from the SQL machine: e.g. by it being a network drive mounted remotely by both
machines, or by the CQPweb machine making its local directory available remotely, by SFTP for
instance. Second, the directory must be accessible at the same path on both machines, either by
mounting it at /var/cqpweb/temp, or, if it must be mounted elsewhere (e.g. /mnt/cqpweb/temp),
then by creating /var/cqpweb/temp as a symbolic link to the mount point.

Once you are sure that the relevant preconditions are fulfilled, you can switch to the SQL-daemon-
file-access method by setting the configuration variable $sql_has_file_access to true (see 1.13 and
2.3.3).

When this variable is true, the first, fastest method of file transfer is used.

Conversely, as noted above in 1.12.2, if the second, default method does not work due to the SQL
daemon’s LOAD DATA LOCAL INFILE command being disabled, and you cannot use the first method
instead, you must fall back on the third, slowest method, by setting $sql_local_infile_disabled

to true.

N.B.: see note in section 1.12.2 about a possible “gotcha”, a MySQL/MariaDB feature that limits
GRANT FILE ON *.* permissions to a single directory using the secure file priv option.

1.13 Creating a configuration file

Before going any further with installation, you must create a configuration file. This can be done
manually or automatically.

The CQPweb Configuration File is described in its own chapter of this manual (2). As that chapter
explains, there are a small number of compulsory configuration variables, and a much larger number
of optional settings. To get CQPweb up and running, you need only create a configuration file with
the nine compulsory settings - optional settings can be added later at your leisure.

There are two ways to do this:

© 2020 Andrew Hardie and contributors 26

CQPweb System Administrator’s Manual 1 INSTALLING CQPWEB

� Manually working from a framework file - see section 2.5

� Using the automatic configuration script - see section 2.4

Either way, you should note that you will need to enter several of the settings that you created at
earlier points in the install process:

� The paths to the four directories you created for CQPweb’s data (see 1.9);

� The username, password, database name and server name for the SQL daemon;

� You will also need to enter at least one system-admin username.

1.14 Completing setup

With your configuration file created, you are ready to run the final steps of the setup process. These
include:

� Creating the structure of the SQL database, and setting up default data;

� Identifying the best Unicode handling supported by your SQL daemon;

� Creating accounts for the admin usernames specified in the configuration file;

Although these can in theory be done manually it is much more effective to let the system do it for
you. That is the purpose of the auto-setup script, which is called from the command line as follows:

� php autosetup.php

(note that you must be inside the bin subdirectory of the base CQPweb directory for this to work).
For a general discussion of running command line scripts see section 5.1.

This script makes your CQPweb installation ready to use. It also, as noted above, actually creates
accounts for the admin users you specified when creating your configuration file. It will ask you to
specify passwords for these users only at the point when it creates the accounts. Passwords for CQPweb
are not stored in the database - only an encrypted form is stored - and are never saved anywhere else
on disk.

Once this script has run, you are ready to go. Open a web browser and navigate to:

� http://your-server.net/path/to/cqpweb/web/directory/

© 2020 Andrew Hardie and contributors 27

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

2 The CQPweb Configuration File

2.1 About the configuration file

This chapter describes the CQPweb configuration file.

The configuration file is a text file. It is always called config.php and is always placed in the lib

subdirectory alongside the code files. It contains PHP code creating variables that are used by the
rest of the system to control different aspects of how things work. It’s important to understand that
none of the things that are set in the configuration file can be changed through the web interface, even
if you are logged on with an admin account. This is for security reasons.

Since the configuration file is a PHP file, you can in theory put any arbitrary code that you like in
it - but it is very strongly recommended that you do not do anything other than assign a series of
variables as specified here.

The variables can be in any order; though it is convenient to organise the file so that groups of settings
that relate to the same part of the system are close to one another, it is not necessary to do so, and
in fact the ordering of the variable assignments in the configuration file makes no difference at all to
CQPweb.

PHP variable assignment is very simple and will be familiar to anyone who has done a bit of program-
ming. All assignments are of the following form:

� $variable_name = VALUE;

In PHP, a file must have <?php on its first line so that its contents will be recognised as PHP code. If
you use the framework file provided (see section 2.5) then this is already present.

There are two kinds of CQPweb configuration variable. First, there is a small group of variables
that you must set - if you don’t, CQPweb just won’t work. These can be set up either manually or
automatically (see section 2.4).

Then, there is a much longer list of variables that you can set, but if you don’t, default values will
be used. These should be added to the configuration file manually. These two types of variables,
compulsory and optional, are listed in sections 2.2 and 2.3.

Every variable has a particular type, one of the normal types in the PHP language. Values of different
types are specified in different ways. Again, these will be unsurprising to anyone who is familiar with
any programming language:

Boolean A value which is either true or false (which may mean on/off, yes/no, and so on). Use the
PHP keywords true and false to represent these values.

Integer number A whole number, entered as normal decimal digits (no spaces or thousands-
separators).

Floating-point number A number with a fractional part, entered in decimal with a . for the decimal
point.

String A short bit of text. Strings can be surrounded with either single quotation marks or double
quotation marks. The difference is that if double quotation marks are used, a wider range of
escape sequences are available to represent special characters. For the CQPweb configuration
file, you are unlikely to need any escape sequences except those for the delimiting quotation
marks themselves, which are \’ and \" in a single-quoted string and in a double-quoted string
respectively.

© 2020 Andrew Hardie and contributors 28

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

2.2 Compulsory configuration variables

Additional information on the variables containing location paths can be found in section 1.9 on
“Setting up directories”.

Additional information on the variables relating to the SQL database can be found in section 1.12 on
setting up the SQL DB upon installation.

Variable name Description

$superuser_username Type: String
This should contain the usernames of users who are to be
system administrators, separated by the pipe | if there is
more than one. For instance: "anna|bert|craig".
You can have as many admin accounts as you like, but you
must have at least one.
To add a new administrator, first create a normal account
for the person (if they don’t already have one), and then edit
the configuration file to add their username to this variable.
To remove an administrator, delete their username from this
variable (but note you must never remove the last username!)
No other actions are necessary.

$sql_user Type: String
The username of the SQL DB account that CQPweb should
use to connect to the SQL daemon. It is usual to have a single
dedicated SQL account for use by CQPweb.

$sql_password Type: String
The password of the $sql_user account on the SQL daemon.

$sql_schema Type: String
The name of the database on the SQL daemon that you cre-
ated for use by CQPweb.

$sql_server Type: String
The address of the SQL daemon (either a hostname/IP ad-
dress, optionally followed by a port number, or else a path to
a local socket; see the MySQL/MariaDB documentation for
more info on this).
If your SQL daemon is on the same computer as the
rest of CQPweb, this variable should usually be the string
"localhost".

$cqpweb_tempdir Type: String
Location of a directory which CQPweb can use to store its
query cache and temporary data files.

$cqpweb_uploaddir Type: String
Location of a directory to use for CQPweb’s “upload area”
(storage for files uploaded by you or by users via the web
interface).

$cwb_datadir Type: String
Location of a directory for CWB index data to be stored in.

$cwb_registry Type: String
Location of a directory that CQPweb can use as its CWB
corpus registry. This does not have to be the same as your
system’s default CWB registry, but it can be if you want.

© 2020 Andrew Hardie and contributors 29

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

2.3 Optional configuration variables:

This is a reference guide to the optional configuration variables; many of them are also mentioned
elsewhere in this manual.

Some optional configuration variables are not documented yet. This chapter will be expanded over
time until it is as close as possible to 100% complete.〈〈

List of undocumented ones can be found in comments in the latex code at this point.
〉〉

TODO

2.3.1 Locations of programs on the system

Variable name Description

$path_to_cwb Type: String
Default: ""

Path of the directory containing the CWB executables (cqp,
cwb-encode, and so on). The path can be absolute or
relative; if relative, bear in mind that CQPweb always
runs from one of the immediate daughter directories of its
main directory. If the path contains any space charac-
ters, they must be escaped (with an escaped backslash, e.g.
".../Program\\ Files/...". If no path is given, it will be
assumed the executables are in the system’s usual path.

$path_to_gnu Type: String
Default: ""

Path of the directory containing the GNU (or equivalent
Unix-y) utility programs, namely tar, gzip, and awk. These
will almost always be on the normal path on a Unix system
but may not be on Windows. The same general comments
apply as to $path_to_cwb.

$path_to_perl Type: String
Default: ""

Path of the directory containing the Perl program; same gen-
eral comments apply as to $path_to_cwb. Only needed if you
wish to use the CEQL parser in CWB-Perl, rather than the
internal CEQL parser.

$path_to_python Type: String
Default: ""

Path of the directory containing the Python executable; same
general comments apply as to $path_to_cwb. (The interface
to Python is an incomplete feature as of version 3.3.8.)

$path_to_r Type: String
Default: ""

Path of the directory containing the R executable; same gen-
eral comments apply as to $path_to_cwb.

© 2020 Andrew Hardie and contributors 30

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$perl_extra_directories Type: String
Default: ""

Extra directories to add to the INCLUDE path when running
Perl (for the CEQL parser). This is only necessary if you have
installed the CWB-Perl modules somewhere other than the
default places where your Perl installation would normally
look for modules. The string should contain one or more
absolute or relative paths, separated by a pipe | if there are
more than one.

〈〈
in table above, in box on path-to-perl, add crossref to where CEQL is explained.

〉〉
TODO

2.3.2 Web daemon features (Apache etc.))

Variable name Description

$web_daemon_user Type: String
Default: ""

You can set this variable to the username of the account on
your system that the WWW daemon runs under. This is
usually something like www depending on the server software
and operating system. For example, for Apache on Debian
and Ubuntu Linux, it’s www-data. When CQPweb knows this
username, it helps in some aspects of corpus file management,
but if this variable is left empty, it will not result in any major
problems.

$web_daemon_group Type: String
Default: ""

You can set this variable to the name of the user group of
the account that the WWW daemon runs under. As with
$web_daemon_user, it isn’t essential for you to supply this
information, but it can be useful for some aspects of corpus
file management.

2.3.3 SQL database features (MySQL / MariaDB)

Variable name Description

$sql_big_process_limit Type: Integer
Default: 5

This variable places a limit on how many big SQL processes
of a single type will be allowed to run at once. There are
several types of “big” process (building collocation database,
building frequency tables, building sort databases, and build-
ing categorised query tables) so more than the limit could
run.

© 2020 Andrew Hardie and contributors 31

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$sql_utf8_set_required Type: Boolean
Default: true

Controls how characters are transmitted between the SQL
daemon and CQPweb.
The default is usually OK. If, however, some characters do
not display properly in frequency list, keyword or collocation
view, then setting this to false may fix things.

$sql_has_file_access Type: Boolean
Default: false

This variable declares to CQPweb whether or not the SQL
daemon has access to the filesystem on which CQPweb is
running, and in particular two key working directories.
It is explained in detail in section 1.12.4.

$sql_local_infile_disabled Type: Boolean
Default: false

You should set this to true if your SQL daemon has been set
up to disallow the LOAD DATA LOCAL command, and you can’t
change this setup. If possible, changing the SQL daemon
configuration to allow LOAD DATA LOCAL is far preferable, it
should be noted!
See also section 1.12.2.

2.3.4 Memory, disk cache, and other hardware resource limits

Variable name Description

$cwb_max_ram_usage Type: Integer
Default: 50

Some CWB programs allow a RAM usage limit to be set on
their activities. When CQPweb calls these programs, it sets
the RAM limit to the number of megabytes specified in this
variable. The default is 50 megabytes. This variable applies
only when CQPweb is run over the web; for the RAM limit
that applies when CQPweb is run from the command line,
see the next variable.

$cwb_max_ram_usage_cli Type: String
Default: 1000

Same as $cwb_max_ram_usage, but applies when CQPweb is
run from the command line (see 5).

© 2020 Andrew Hardie and contributors 32

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$query_cache_size_limit Type: Integer
Default: 6442450944

Controls the size of the query cache (the maximum size, in
bytes, to which the temporary directory will be allowed to
grow before old cached queries get deleted). Note that this
only affects the size of the query cache; anything stored as
an SQL table (such as temporary frequency tables or collo-
cation databases) does not count towards this limit, and are
controlled by separate variables also listed in this section.
Until the cache limit is reached, the cache will just keep grow-
ing! Cached files are never deleted merely due to age, only
when the disk space needs to be reused.
The default value is 6 gigabytes.

$db_cache_size_limit Type: Integer
Default: 6442450944

Controls the size of the user-database cache (the maximum
size, in bytes, to which the SQL table containing the user-
database cache will be allowed to grow before old databases
get deleted). This includes data for collocations, sorting, and
distribution; categorised query data also counts towards the
total but as it cannot be reconstructed, it will never age out
of the cache.
The default value is 6 gigabytes.

$restriction_cache_size_limit Type: Integer
Default: 6442450944

Controls the size of the restriction cache (the maximum size,
in bytes, to which the SQL table containing the restriction
cache will be allowed to grow before old cached restrictions
get deleted). This counts only the part of the SQL database
devoted to temporarily-stored restriction data, not any other
stored data. Until the cache limit is reached, the cache will
just keep growing!
The default value is 6 gigabytes.

$freqtable_cache_size_limit Type: Integer
Default: 6442450944

This variable places a limit on how much disk space ad hoc
frequency tables in SQL are allowed to take up. It is expressed
as a number of bytes; the default is 6 gigabytes.

2.3.5 Configuring the user interface

Variable name Description

$default_per_page Type: Integer
Default: 50

The number of results to show per page by default (in con-
cordances, frequency lists, keyword lists, and so on). Most
tools also allow the results-per-page rate to be altered on a
per-query basis.

© 2020 Andrew Hardie and contributors 33

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$default_history_per_page Type: Integer
Default: 100

The number of items to show per page in history-type displays
(such as query history, saved queries, and so on). As a general
rule you would normally want more of these per page than
you would for $default_per_page - thus the difference in
default values.

$default_collocations_per_page Type: Integer
Default: 100

The number of items to show per page in the collocation view.

$dist_graph_img_path Type: String
Default: "../css/img/blue.bmp"

This string is the (relative) address of an image file that will
be used for the bars in the bar chart mode of the Distribution
display. The default is a file internal to CQPweb that creates
plain blue bars.

$dist_num_files_to_list Type: Integer
Default: 100

The number of texts (or other items) to display in the Fre-
quency Extremes mode of the Distribution display. The num-
ber of texts is limited because corpora can easily have thou-
sands or tens of texts or other item identifiers, which would
make the page hard to read and slow to load.

$colloc_max_comparison_length Type: Integer
Default: 40

The number of characters in each word or annotation form
to compare when grouping forms for collocation. If this is set
high, words and tags will be compared more rigorously, but
more disk space will be needed for the collocation data. The
default is usually fine.

$sort_max_comparison_length Type: Integer
Default: 40

The number of characters in each word or annotation form to
compare when sorting a concordance, or grouping forms for
a frequency breakdown. If this is set high, words and tags
will be compared more rigorously, but more disk space will
be needed for the sort data. The default is usually fine.

$uploaded_file_bytes_to_show Type: Integer
Default: 102400

When a file uploaded by the admin user (or, in future, by
regular users) is displayed, only a certain amount of data
is shown: the first section of the file, up to the number of
bytes specified in this setting (to the nearest whole line). The
default is to show 100 KB. A too-large setting here may cause
browser overload, since so many of the files that CQPweb
deals with are so very large.

© 2020 Andrew Hardie and contributors 34

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$hide_experimental_features Type: Boolean
Default: false

If set to true, certain new features deemed “experimental”
will be hidden in the interface; users will neither see nor be
able to use them. What features count as “experimental” will
change from version to version.

2.3.6 Tweaking the look-and-feel〈〈
this should go in a section of its own somewhere. the table below should have refs to it

〉〉
About colour TODO

schemes:

The appearance CQPweb’s interface draws on a small palette of about seven or eight colours. Different
corpora can be given different onscreen colours as a hint to help users keep track of what corpus they
are working with. The main menu, user account page, and admin control also use configurable colours.

The colour scheme for a corpus can be specified in three ways. Each is coded as a string in the
configuration file (and database); more user-friendly ways to specify them are provided in the interface.

� By reference to a built-in colour scheme. This is specified with a string beginning in followed
by the name of the colour scheme in question.

The available colour schemes are blue, yellow, green, red, brown, purple, navy, lime, aqua, neon,
dusk, gold, rose, teal, charcoal, motley, cinema, skin, and floral.

~blue is the default generic CQPweb colour scheme.

� By providing the relative or absolute URL of a CSS stylesheet which contains the colour defini-
tions. Important note: stylesheets created for earlier versions of CQPweb (before 3.3) don’t work
with version 3.3.0 and higher. Any custom stylesheets you are using will need to be reworked to
use the new system.

� By providing raw data specifying the colour definitions (in JSON format).

If you provide a CSS file it should look something like this:

:root {

--colour-layout-fg : colour-name-or-code ;

--colour-layout-bg : colour-name-or-code ; /* optional, default = #d5d5d5 */

--colour-layout-strong : colour-name-or-code ;

--colour-layout-contrast: colour-name-or-code ;

--colour-layout-data2 : colour-name-or-code ; /* optional, default = #f0f0f0 */

--colour-layout-outline : colour-name-or-code ; /* optional, default = white */

--colour-text-normal : colour-name-or-code ;

--colour-text-faint : colour-name-or-code ;

--colour-text-bright : colour-name-or-code ;

--colour-tooltip-frame : colour-name-or-code ; /* optional, default = #003399; */

--colour-tooltip-bg : colour-name-or-code ; /* optional, default = #e6ecff; */

--colour-tooltip-text : colour-name-or-code ; /* optional, default = #000066 */

}

© 2020 Andrew Hardie and contributors 35

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

This CSS block creates a number of colour variables which will be embedded in the HTML header of
each CQPweb page, for later reference by the presentation code.

A colour scheme specified as a JSON object should be a single object which maps variable names,
equal to the parts of the names in the CSS code above after --colour- (i.e. layout-fg, layout-bg,
text-normal, text-faint etc.), to the HTML colour names or numeric codes you wish to use.

Variable name What it controls

layout-fg Colour of foreground layout blocks (usually a pastel colour)
layout-bg Colour of background layout blocks (usually pale grey)
layout-strong Colour of emphasised layout blocks (table/column headings)
layout-contrast Colour of layout blocks that contrast with the usual colours (e.g. warnings, errors)
layout-data2 Colour of secondary data area in concordance display (usually gray)
layout-outline Colour of the bands of empty between layout blocks.
text-normal Colour for most text
text-faint Colour for de-emphasised text, e.g. the page footer, query speed info
text-bright Colour for highlighted text (mostly links)
tooltip-frame Colour of the the outer frame of floating tooltips
tooltip-bg Colour of the background of floating tooltips
tooltip-text Colour of the text in floating tooltips

Variable name Description

$colour_scheme_for_homepage Type: String
Default: (see below)
A colour scheme specification to use for the main menu page.
By default, a lovely blue-and-grey table effect is used.
If a relative URL is used for the homepage colour scheme, it
must be relative to the homepage, which is one level higher
(in the directory tree) than all the other URLs that CQPweb
runs from. So if you want to address something in the CSS
folder, for instance, you would need to start this variable with
css/, rather than ../css.

$colour_scheme_for_adminpage Type: String
Default: (see below)
A colour scheme specification to use for the admin control
panel. By default, a red-and-grey colour scheme is used.
Same notes apply as to $colour scheme for homepage.

$colour_scheme_for_userpage Type: String
Default: (see below)
A colour scheme specification to use for the user-account
homepage. By default, a green-and-grey colour scheme is
used.
Same notes apply as to $colour scheme for homepage.

$homepage_use_corpus_categories Type: Boolean
Default: false

If this is true, then the list of corpora on the main menu page
will be given as a set of lists according to the corpus category,
rather than as a single long list of corpora.

© 2020 Andrew Hardie and contributors 36

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$homepage_welcome_message Type: String
Default: "Welcome to CQPweb!"

A little bit of text (which can include HTML formatting) that
will appear in the header box of the main menu page.

$homepage_logo_left Type: String
Default: ""

Settings for a logo to display on the left of the header box
of the main page menu. This string can contain either (a)
a single URL for an image to use as the logo; or (b) two
URLs with a tab between them, in which case the logo image
becomes a clickable link: the first URL will be used as the
address of the image, and the second as the address for the
link.
URLs can be absolute, or relative to the location of
the main menu page (i.e. the URL of your CQPweb
base directory). A Corpus Workbench logo that you
can use if you wish is located at the relative URL of
css/img/ocwb-logo.transparent.gif . If you are running
CQPweb on an HTTPS server, note that the logo URL you
use must be on the same server (if not, most browsers will
warn that the webpage is only partially secure). It is a good
idea to add your image files to the css/img/ subdirectory.

$homepage_logo_right Type: String
Default: ""

Same as $homepage_logo_left, but whatever you specify ap-
pears on the right side of the header box.

$searchpage_corpus_name_suffix Type: String
Default: "powered by CQPweb"

A little bit of text (which can include HTML formatting) that
is suffixed to the name of the corpus in the main search page
header. If you don’t want anything, set it to an empty string.

2.3.7 User account creation

CQPweb has the facility for users to create their own accounts through a standard “validate-by-email”
mechanism. The configuration options in this section control whether this facility is available, as well
as various aspects of how it works.

Variable name Description

$allow_account_self_registration Type: Boolean
Default: true

If this is true, a form will be exposed for anyone to sign up
for an account on your server. If false, this form will not be
available, and only admin users will be able to create new user
accounts. (You can alternatively configure your web server to
block or limit access to the signup form if you wish.)

© 2020 Andrew Hardie and contributors 37

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$allow_account_email_change Type: Boolean
Default: false

If this is true, users are allowed to change their account’s
email address. It is false by default because of the role the
email address plays in granting access to corpora (see next
variable!).
At present, user email addresses are not revalidated after
being changed by the user, since if the user types their email
address wrong, they can correct it via same interface; in future
versions of CQPweb, email revalidation may be added.

$allow_account_email_change_group_persist Type: Boolean
Default: false

This variable only has any effect if
$allow_account_email_change is true.
By default, when a user changes the email address associated
with their account, they are removed from any user group
that has an Auto-add regex (see 11.4). (because they are
no longer known to meet the criteria for membership in that
group). If this variable is set to true, this doesn’t happen:
the user remains a member of every group they were part of
before the change of email address.
Regardless of the value of this setting, a user who changes
their email address will subsequently be added to any group
with an auto-add regex that is matched by their new email
address (i.e. just as new accounts are added to any group
whose regex their email matches). This can, of course, result
in the user being added back to a group that they were just
removed from by the previous step.
In most cases, you would only set this variable to true if you
manage group membership manually rather than via auto-
add regex. Otherwise, this setting is best left set to false.

$account_create_contact Type: String
Default: ""

This variable only has any effect if
$allow_account_self_registration is false. In this
case, you can supply a snippet of text here that will be added
to the web interface to tell prospective users who to contact
to request an account.
This string can contain HTML markup, for
example to add a “mailto” link, e.g. "A. N.

Other" .

© 2020 Andrew Hardie and contributors 38

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$account_create_captcha Type: Boolean
Default: true

Determines whether or not the account-creation form is pro-
tected by a CAPTCHA challenge. This can help protect
your server against web robots, but you might want to dis-
able CAPTCHA for convenience if your account-creation page
is inaccessible to users on the open Internet anyway. If
your PHP installation lacks the GD extension to PHP (see:
http://php.net/gd), then this setting is always false, re-
gardless of what you specify.

$account_create_one_per_email Type: Boolean
Default: false

Determines whether or not multiple accounts can be created
that are linked to the same email address. By default, multi-
ple accounts with the same email address are allowed. To dis-
allow this, set this option to true. In that case, any attempt
to create a second account with an email address already on
the system will fail.
If you change this setting, it does not apply retroactively: any
accounts already in the system that share an email address
will not be affected.

$blowfish_cost Type: Integer
Default: 11

CQPweb uses Blowfish to encrypt passwords. The “cost”
controls how long it will take for this encryption to run. The
higher it is, the harder it is for an attacker to crack a given
encrypted password. As of 2020, the default value of 11 is
reasonable, but if you are worried about security you might
try 12 or 13.
In the System diagnostics section of the admin interface, there
is a tool to stress-test password encryption, to see if your
current Blowfish cost is high enough.

$password_minimum_length Type: Integer
Default: 7

Passwords shorter than this number of characters will be dis-
allowed. The default of 7 should be treated as an absolute
minimum on an externally accessible server; it should really
be much more for security’s sake. On a machine that is not
open to the net, on the other hand, it can be set as low as
you like, even 0.

© 2020 Andrew Hardie and contributors 39

http://php.net/gd

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$create_password_function Type: String
Default: "password_insert_internal"

CQPweb uses “suggest password” functions to ease the cre-
ation of user accounts in the admin interface (see 11.2). The
default function (password_insert_internal) produces ran-
domised passwords of the form aaaaddaaaa, where a is a
lowercase letter and d is a digit.
You can optionally create a password function of your own,
e.g. to get nicer, more wordlike passwords. This is something
you should only attempt if you know how to write functions in
PHP! The function you create should take a single argument
(an integer), and should return an array of strings, where each
string is a suggested password, and the number of strings in
the array is equal to the integer argument.
Then, set this variable to the name of the function you have
created (anything beginning “password insert ...” is guaran-
teed not to conflict with any existing function) and add the
function somewhere in the file useracct-lib.php. The best
place to add a function is right at the end of the file (that
way, if you are using a checked-out copy of the code from the
CWB Subversion repository, your modification to the code is
likely to be preserved when you update CQPweb).

2.3.8 User corpus system

Variable name Description

$user_corpora_enabled Type: Boolean
Default: false

If this is set to true, the system allowing users to upload and
index their own corpora will be enabled. This means it will
be visible to users. However, users won’t be able to actually
use it until they have been granted the necessary privileges
(to upload files, to use CorpusInstaller plugins, and to use
disk space in the upload area and in CQPweb’s index data
area).

$colleaguate_system_enabled Type: Boolean
Default: false

If this is set to true, the Colleaguate system will be enabled.
This system mimics a social network except that the purpose
of forming links to colleagues is so that users can share out
access to their corpora and subcorpora.

$max_installer_processes Type: Integer
Default: 1

User corpus installations run on a job queue to limit the load
on the system. This variable controls how many installation
processes can run at once. Jobs will wait to run until they
are at the top of the queue and there is a free “slot”.

© 2020 Andrew Hardie and contributors 40

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$installer_process_wait_secs Type: Integer
Default: 3

This controls how long each user corpus installer position will
wait after checking its position in the job queue before check-
ing again. The wait time will be this number of seconds,
multiplied by the number of jobs ahead in the queue.

2.3.9 RSS feed control

Variable name Description

$rss_feed_available Type: Boolean
Default: false

If this is set to true, then an RSS 2.0 feed of all the system-
administration messages currently on the system will be avail-
able; its location will be the rss subdirectory of your CQPweb
base directory.
(If the RSS feed is activated, an icon linking to the feed will
appear in the header bar of the the system-messages block.)
The next three configuration variables allow you to define
how you want the RSS feed to behave; they will be ignored if
$rss_feed_available is not true.

$rss_link Type: String
Default: (A URL corresponding to the root directory of the
CQPweb installation.)
All RSS feeds must have a URL associated with them. By de-
fault the CQPweb RSS feed’s link is simply the root directory
of the installation, but you can configure it to be something
else by setting this variable. Note that if you set it to any-
thing other than a valid URL the resulting RSS feed probably
won’t parse.

$rss_feed_title Type: String
Default: "CQPweb System Messages"

The title of the feed. You can set it to whatever you like, e.g.
to mention your institution or organisation; it is useful to do
so to disambiguate the RSS feed of one CQPweb server from
another.

$rss_description Type: String
Default: "Messages from the CQPweb server’s

administrator"

The basic description that will pop up in subscribers’ feed
readers. You can set this to anything you like, but it should
not be longer than a short paragraph in order to be effective.

2.3.10 Error reporting

The variable $debug_on is the primary “switch” for whether debugging and error messages are printed
out. The other $debug_... variables give finer control over what is printed, where, and for who.

Likewise, $backtrace_on is the main switch controlling whether a backtrace (call stack) is printed
when CQPweb exits prematurely due to having encountered an error. The other $backtrace...

© 2020 Andrew Hardie and contributors 41

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

variables give finer control over what is printed, where, and for who.

Variable name Description

$debug_on Type: Boolean
Default: false

If true, debugging messages will be printed (normally, in the
browser, but see $debug_to_screen below).

$debug_for_all Type: Boolean
Default: false

If true, debugging messages will be printed for all users. Oth-
erwise, only admin users will see these messages.

$debug_sql Type: Boolean
Default: false

If true, all SQL queries, and the responses from running those
queries, will be printed to the screen whenever $debug_on is
true.

$debug_cqp Type: Boolean
Default: false

If true, everything sent to/received from the CQP backend
will be printed to the screen whenever $debug_on is true.

$debug_html Type: Boolean
Default: true

If you set this to false, debug and error messages will
be printed to the browser as text without HTML format-
ting. Plain text messages are always produced (a) when out-
putting a text-file download; (b) in scripts that run from the
command-line.

$debug_to_screen Type: Boolean
Default: true

If true, debugging messages are sent to the user’s screen; that
is, they are printed in the browser, or in the CLI when CQP-
web has been invoked from the command-line.

$debug_to_log Type: Boolean
Default: false

If true, debugging messages are sent to the server log. The
server log will also receive messages that would have been
printed to the browser whenever CQPweb emits such a mes-
sage after the user’s browser has been disconnected.

$backtrace_on Type: Boolean
Default: false

If true, the exit message that is generated when CQPweb exits
prematurely in an error condition will include a backtrace
(that is, a printout of the call stack tracing the point at which
the error occurred).

$backtrace_for_all Type: Boolean
Default: false

If true, backtraces will be printed for all users. Otherwise,
only admin users will see backtraces.

© 2020 Andrew Hardie and contributors 42

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$backtrace_compact Type: Boolean
Default: true

If true, a compact backtrace (one line per function call in the
stack) is printed; this is usually preferable, as the alternate,
fuller format is somewhat hard to read.

$backtrace_to_screen Type: Boolean
Default: true

If true (the default), backtraces (when switched on) are sent
to the user’s screen; that is, they are printed in the browser,
or in the CLI when CQPweb has been invoked from the
command-line.

$backtrace_to_log Type: Boolean
Default: false

If true, backtraces (when switched on) are sent to the server
log.

The variables controlling where debug messages and backtraces are sent are non-exclusive. It is
entirely possible, for instance, to have them printed to both server log and screen.

2.3.11 Miscellaneous configuration options

The configuration options grouped in this section have not yet been sorted into larger groups; in future
they probably will be.

Variable name Description

$cqpweb_switched_off Type: Boolean
Default: false

If this is set to true, CQPweb appears switched off when
accessed in a browser. Most parts of the program simply
don’t run in this case; when CQPweb detects that this setting
is true, it simply prints a “switched off” message and exits
without connecting to the SQL database or to CQP.
The message shown can be found in the file
switched-off.php, located in the CQPweb lib

folder. This default message can be amended by edit-
ing switched-off.php; alternatively you can add a
short blob of extra HTML in the companion variable
$cqpweb_switched_off_extra_message.
When CQPweb is switched off in this way, you can still run
operations on the command-line.
This setting is mainly of use to ensure nothing that users do
can affect the database while upgrades, repairs, and so on
are being run; as noted, the test to detect switched-off state
runs before CQPweb makes an SQL DB connection. It would
be possible to end up with an inconsistent database state if
users were able to access the interface and “do things” while
an upgrade is in process.

© 2020 Andrew Hardie and contributors 43

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$cqpweb_switched_off_extra_message Type: String
Default: ""

You can set this to contain a little bit of text or HTML which
will be included in the page presented to browsers that at-
tempt to access CQPweb at when it is switched off.

$cqpweb_root_url Type: String
Default: ""

You can set this to an absolute URL (in the style
"http://server.net/path/to/cqpweb/directory") and
this URL will be used internally when CQPweb redirects
the user’s browser from one point in the system to another.
If you don’t set it, then CQPweb will try to work out its
own URL based on information in PHP’s global $_SERVER

array. That may produce incorrect results if you are running
CQPweb in an environment where there is a lot of server
proxying; if it does, things can be fixed by setting this
variable appropriately. Otherwise, this can be safely ignored.

$cqpweb_no_internet Type: Boolean
Default: false

If this is set to true, CQPweb assumes it is not connected to
the open internet, and that it is only being accessed locally
(i.e. by a web browser sending HTTP requests to localhost).
This has two effects. First, CQPweb will disable all email-
sending functions. Second, normal user account signup
(which relies on email) will be turned off; that is, true here
overrides $allow_account_self_registration, setting it to
false.
It is convenient to set this as true if you have installed CQP-
web for personal use on a desktop/laptop computer.

$cqpweb_email_from_address Type: String
Default: ""

An email address, which if provided will be used as the
“From:” and “Reply-To:” address for all emails sent by the
system. If this is not provided, defaults will be provided by
your system’s email-sending program - CQPweb will not at-
tempt to supply a default. Be aware, however, that some mail
systems will block emails that lack a clear “From” address,
as they are assumed to be spam - so it is wise to set this.
The email you specify can take the form of either a bare
address (someone@somewhere.net) or a named address (A.
N. Other <someone@somewhere.net>).
There are two basic possibilities here: (a) set this to a real
email address, so any replies to system emails go to some
monitored mailbox; or, (b) set this to an obviously fake ad-
dress to (i) signal to users they should not reply and (ii)
ensure that, if they do, the replies go into a black hole:
an example value for the latter would be "CQPweb Server

<do-not-reply@server.net>" or something along those
lines.

© 2020 Andrew Hardie and contributors 44

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$server_admin_email_address Type: String
Default: ""

An email address, which if provided will be exposed in the
user interface to logged-in users as a designated means of
contacting the server system administrator. If this is left as
an empty string, all bits of text in the interface that would
have specified a contact email address will simply be omitted.
Email addresses on the web are often disguised (e.g. by
spelling out “at” and “dot” instead of using the equivalent
punctuation marks). It is not normally necessary for the
email address in this variable to be disguised in this way,
since only logged-on users can access the pages where it is
displayed. However, you may wish to put an obscured email
address here if you are running an open server.
The email address is not converted into a link, so there are
no restrictions on the format of the text. HTML is accepted
and will be inserted into the user interface as you specify it.

$cqpweb_cookie_name Type: String
Default: "CQPwebLogonToken"

Label by which login cookies will identify themselves to users’
browsers. The default value is normally fine, but if you have
more than one installation of CQPweb running from the same
web domain, you may find that their login cookies get con-
fused with one another unless you set this variable to some-
thing different in each installation. The main logon cookie
will use this name directly; other cookies will append a suffix.
It is best to use just word characters (letters, numbers, un-
derscore) for this setting.

$cqpweb_cookie_max_persist Type: Integer
Default: 5184000

This is the maximum length of time, in seconds, that a user’s
login will persist if they do not visit the site (the clock is
“reset” every time they do visit the site). The default value
is 60 days.
This does not affect the option given to the user to choose
whether or not they stay logged in; if they choose not to stay
logged in, their browser will delete the cookie anyway and the
persistent login will never be reused.

$cqpweb_running_on_windows Type: Boolean
Default: (see below)
You can set this variable to true to declare that the operating
system is Windows, or to false to declare that it is (some
flavour of) Unix. If this variable is not set, CQPweb will use
PHP’s internal settings to guess the OS - so the only reason
to use this variable is if CQPweb guesses wrongly on your
system. The fallback if guesswork fails is false.
It is possible to run CQPweb on Windows 10 under the Win-
dows Subsystem for Linux ; WSL does not count as Windows
as far as CQPweb is concerned, so the correct setting in that
case is false.

© 2020 Andrew Hardie and contributors 45

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

Variable name Description

$use_unix_tools Type: Boolean
Default: false

For some procedures, CQPweb can either use an external
Unix tool (sort, head, awk) or an equivalent internal pro-
cess. If this variable is set to false, the internal process is
used. If this variable is set to true, CQPweb uses the Unix
tool.
When this setting is true, you must ensure that the
Unix tool executables are findable; this may require setting
$path to gnu (see 2.3.1).
It is possible to run CQPweb on Windows 10 under the Win-
dows Subsystem for Linux ; WSL does not count as Windows
as far as CQPweb is concerned, so the correct setting in that
case is false.

$use_external_ceql_parser Type: Boolean
Default: false

CQPweb can use either of two Common Elementary Query
Language (CEQL) parsers to translate Simple Queries into
CQP syntax.
The first is an internal parser, written in PHP. This is the
default. The second is the external Perl CWB-CEQL module,
which was the only parser used by earlier versions of CQPweb.
If you set $use_external_ceql_parser to true, the Perl
parser will be used. To do this, you must have the CWB-
Perl module installed: see 1.6.

2.4 Using the auto-configuration script

One of the administrative tools supplied as part of CQPweb is an auto-configuration script.

The script, also discussed in section 5.3, is an interactive tool for creating a basic configuration file.
When you run the script, it will ask you a series of questions. Each question sets one of the compulsory
settings (see 2.2).

To use the auto-configuration script, open a command-line terminal and go to the base directory of
your CQPweb installation. Then go into the bin directory, and enter the following:

� php autoconfig.php

... and follow the instructions to enter the paths and other information that you made a note of when
setting up the various directories, databases, etc. to be used by CQPweb (as discussed in chapter 1).
When you are asked to specify admin usernames, enter at least one username (normally, the one you
personally will use).

Once you’ve answered all the questions, the script writes your answers to a configuration file in the
correct location. If a configuration file already exists, the script will not overwrite it.

Once you’ve run this script, you can edit the resulting config.php file to add any optional configuration
variables that you might want.

© 2020 Andrew Hardie and contributors 46

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

2.5 Using the configuration file framework

The file framework-for-configuration-file.php in the lib subdirectory of CQPweb is a blank
framework file, which contains all the compulsory configuration variables. It also has a list of the
optional configuration variables (with short explanations), to make the process of changing the optional
variables less taxing. The easiest way to create a configuration file manually is using this framework
file, as follows:

� Make a copy of the framework-for-configuration-file.php file in the lib directory

� Rename the copy to config.php

� Use a text editor to edit its contents.

– For each compulsory variable, insert the correct value for your system.

– Add any optional variables you wish to use (remove # to un-comment an option, then enter
the desired setting).

2.6 Changes from earlier versions of CQPweb

The configuration file format described in this chapter is that of version 3.3 of CQPweb. The fol-
lowing sections summarise the changes made to previous versions. Some of these are not backwards-
compatible and require you to adjust your configuration file when you upgrade.

Not listed here: the many new configuration variables which have been added over time; these have
simply been added to the table of optional configuration variables in section 2.3.)

2.6.1 Changes in version 3.3

Version 3.3 made substantial changes to the previous format of the configuration file.

� The configuration file was renamed from config.inc.php to config.php. However, if
config.php is not present, as a fallback CQPweb will still look for a file with the old name, so
systems with a config.inc.php will continue to work (at least until version 3.4)

� Configuration variables beginning in $mysql were renamed to begin with $sql instead (since
many systems now use MariaDB instead of MySQL).

� In addition, the database connection variables were renamed in the interests of using more
standard terminology, as follows:

– $mysql_webuser became $sql_user

– $mysql_webpass became $sql_password

– $mysql_schema became $sql_schema (i.e. only the standard change to the prefix)

– $mysql_server became $sql_host

The old names will continue to work until version 3.4.0 at least.

� The names of certain cache-limit variables were changed to make them more consistent.

– $mysql_freqtables_size_limit was renamed $freqtable_cache_size_limit .

– $cache_size_limit was renamed $query_cache_size_limit .

© 2020 Andrew Hardie and contributors 47

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

This change was initially made in v 3.2.12, but as of version 3.3, the old variable names are no
longer respected.

� Configuration variables beginning in $css_path were renamed to begin with $colour_scheme

instead; they can now contain any of the valid ways to specify a colour scheme
〈〈

crossref to a TODO

section explaining the new colour scheme system to a section explaining the new colour scheme
system

〉〉
.

– $css_path_for_homepage was renamed $colour_scheme_for_homepage .

– $css_path_for_adminpage was renamed $colour_scheme_for_adminpage .

– $css_path_for_userpage was renamed $colour_scheme_for_userpage .

The old variable names beginning css path will continue to work until version 3.4.0 at least.

� A new system for debug and error message printing was introduced (see 2.3.10 above). The old
variables for debug messages were removed from the official list, though they will still work until
version 3.4.0. The new variables offer finer control and are more systematically named. The old
variables correspond to the new ones as follows:

– Old $print_debug_messages corresponds to $debug_on

– Old $debug_messages_textonly corresponds to $debug_html (but the values have oppo-
site meanings: the old variable switches HTML formatting off, whereas the new variable
switches it on)

– Old $all_users_see_backtrace corresponds to $backtrace_for_all

2.6.2 Changes in version 3.2

Version 3.2 made only minor configuration file format changes.

In version 3.2.11 and 3.2.12, the names of certain cache limit variables were changed to make them
more consistent. The old names were retained as synonyms during version 3.2, but removed as of
version 3.3.0.

� $mysql_freqtables_size_limit was renamed $freqtable_cache_size_limit .

� $cache_size_limit was renamed $query_cache_size_limit .

In version 3.2.32, all configuration variables relating to Perl were made optional (as the CWB Perl
modules are no longer essential for CWB).

2.6.3 Changes in version 3.1

Version 3.1 made changes from the configuration file format used in 3.0 and earlier. If you have a
configuration file from an earlier version, here are the things you need to know about the changes that
have taken place.

� The four compulsory variables that represent CQPweb’s storage locations changed their format.

– In 3.0, they were absolute paths, but with the initial / left off. This was a very non-standard
way of specifying a filesystem path, and has been abandoned. In 3.1, these variables are
treated as relative paths if they do not begin with /, and as absolute paths if they do.

© 2020 Andrew Hardie and contributors 48

CQPweb System Administrator’s Manual 2 THE CQPWEB CONFIGURATION FILE

– This means that if, for instance, you had the following in 3.0:

$cqpweb_tempdir = ’var/cqpweb/temp’;

then in order for things to continue to work, you must change it to the following in 3.1+:

$cqpweb_tempdir = ’/var/cqpweb/temp’;

– This affects $cqpweb_tempdir, $cqpweb_uploaddir, $cqpweb_datadir, and
$cqpweb_registry.

� $path_to_cwb and $path_to_perl changed as follows:

– They became optional; if they are not set, then the CWB and Perl executables will be
sought in the system path as per usual for programs whose precise location is not specified.

– Their form was changed in the same way as the storage location variables: previously, they
were absolute paths with the initial slash missing, now they are absolute or relative paths.

– This means that if, for instance, you had the following in 3.0:

$path_to_cwb = ’usr/local/bin’;

then in order for things to continue to work, you must change it to the following in 3.1:

$path_to_cwb = ’/usr/local/bin’;

(alternatively, if /usr/local/bin is on the path for the web-server user, as it usually would
be, there is no need to specify this variable at all).

� $path_to_apache_utils was removed.

� $password_more_security was removed.

� $cqpweb_uses_apache was removed.

� $utf8_set_required was renamed $mysql_utf8_set_required.

� $cwb_extra_perl_directories was renamed $perl_extra_directories.

� $default_mysql_process_limit was renamed $mysql_big_process_limit.

� $cache_size_limit was given a new default value: 6GB rather than 3GB.

� $mysql_freqtables_size_limit was given a new default value: 6GB rather than 3GB.

� $use_corpus_categories_on_homepage was renamed $homepage_use_corpus_categories.

© 2020 Andrew Hardie and contributors 49

CQPweb System Administrator’s Manual 3 THE SYSTEM ADMINISTRATOR’S INTERFACE

3 The System Administrator’s Interface

3.1 Introduction

The main user interface for system administrators is the Admin Control Panel. This contains con-
trols for monitoring and managing many different aspects of CQPweb’s behaviour, including indexing
corpora, managing user access privileges, and tweaking the look-and-feel of the system.

The Control Panel can be accessed in three ways:

� From the Admin control panel link that appears in the side-menu for any corpus’s main query
screen if the logged-in user is an administrator.

� From the Admin control panel link on an administrator’s user homepage.

� Via direct URL entry: add /adm to the base URL of your CQPweb system.

The Control Panel is laid out just like the main query screen and the user homepage: with a side-menu
on the left and a main area displaying the selected function.〈〈

add image here
〉〉

TODO

Different chapters of this manual explain different parts of what can be done with the control panel.
The notation used throughout to refer to features of the control panel is as follows:

� CP >XXX >YYY

where “CP” means “go to the control panel”, from where the link for option YYY should be clicked,
and this link is found under menu heading XXX. If any further links must be clicked to access some
feature, more > are given added.

A general overview of the Control Panel is given in section 3.2.

A secondary interface exists for functions that affect just a single corpus. These are not accessed via
the Control Panel, but rather through the corpus query menu.

When a system administrator is logged in, an extra menu section appears in the side-menu of the main
query screen, with the heading Admin tools. This appears immediately before the About CQPweb menu
section. The various menu items under Admin tools are discussed in section 3.3.

3.2 The Admin Control Panel: Feature list

There follows a listing of all features available from the menu in the Admin Control Panel, with cross-
references to the other parts of the manual where discussion of those features can be found. If there
is no discussion elsewhere in the manual, a brief explanation is given here.

� Corpora

– Show corpora: list of all installed corpora (except user corpora), together with the size in
types, tokens, and texts, and the disk space each uses; plus a link to the delete function.
There are disk use totals at the bottom of the screen.

– Show user corpora: list of corpora installed by users (with the same information as in Show
corpora)

– Install new corpus: see 6.10

© 2020 Andrew Hardie and contributors 50

CQPweb System Administrator’s Manual 3 THE SYSTEM ADMINISTRATOR’S INTERFACE

– View upload area: list of uploaded files, with size/date info plus controls to view, com-
press/decompress, or delete a file. There is also a file upload tool to add new files. However,
for very big files, it is better to use an FTP or SFTP client or the like rather than the web
form.

– Manage corpus categories: see 6.17

� Templates

– Annotation templates: see 6.7

– XML templates: see 6.9

– Metadata templates: see 7.6

– Catdesc templates: see
〈〈

ref todo
〉〉

TODO

– Visualisation templates: see
〈〈

ref todo
〉〉

TODO

� Users and privileges

– Manage users: see 11.2

– Manage groups: see 11.4

– Manage group membership: see 11.4

– Manage privileges: see 11.5

– Manage user grants: see 11.6

– Manage group grants: see 11.6

� Plugins

– Manage plugins: see
〈〈

ref todo
〉〉

TODO

– Show installer jobs: list of currently queued and complete corpus installation jobs created
by uses/

� Frontend interface

– System messages: tool to add/remove messages from the list that appears on the homepage
and on the standard query page.

– Embedded pages: tool to add/remove standalone HTML pages within the system for use as
corpus or annotation documentation (etc.): see

〈〈
ref todo

〉〉
TODO

– Mapping tables: see
〈〈

reference here
〉〉

TODO

� Cache control

– Query cache: see 4

– Database cache: see 4

– Restriction cache: see 4

– Subcorpus file cache: see 4

– Frequency table cache: see 4

– Temporary data: see 4

– Fragmentation check : see 4

– CWB file monitor : see 4

� Backend system

© 2020 Andrew Hardie and contributors 51

CQPweb System Administrator’s Manual 3 THE SYSTEM ADMINISTRATOR’S INTERFACE

– System settings: list of system settings maintained internally by CQPweb (which, unlike the
configuration variables discussed in 2, cannot be controlled by the user). These concern the
collations available on the current SQL daemon, and the status of the CQPweb database.

– Manage SQL processes: see
〈〈

ref todo
〉〉

TODO

– View an SQL table: debugging tool, allows you to print out the contents of any of tables
in CQPweb’s SQL database.

– SQL configuration: displays configuration settings on the SQL daemon that are of relevance
to CQPweb.

– PHP configuration: displays PHP configuration settings that are of relevance to CQPweb.

– PHP opcode cache: tool to monitor and manipulate the PHP opcode cache (explained in
the web interface itself)

– Public frequency lists: see
〈〈

ref todo
〉〉

TODO

– System snapshots: under development, do not use

– System diagnostics: tools to help diagnose problems with CQPweb

� Usage statistics

– Corpus statistics: ranking of corpora by the number of queries run on them.

– User statistics: ranking of users by the number of queries they have run.

– Query statistics: list of the most frequently-run queries (across all corpora).

– Clear history : a control allowing you to clear the Query History, on which the usage statis-
tics are based (thus resetting all stats).

� Exit

– Exit to CQPweb homepage: a link to the main page.

〈〈
Make some of the XREFS above more specific when those sections of the manual are finished

〉〉
TODO

3.3 Corpus Admin Tools: Feature list

The first item on this menu is simply a link to the Admin Control Panel. The other items are discussed
in order below.

3.3.1 Corpus settings

This menu item leads to a screen where you can configure a large set of miscellaneous options. Also
to be found here is the form for adding or deleting corpus-level metadata (

〈〈
crossref

〉〉
). TODO

To modify any option, simply tweak its value in the interface then press the Update button.

The options are as follows:

� Corpus title: allows you to change the title you supplied when you indexed the corpus.

� Language: allows you to set the language of the corpus. Language is “undetermined” by default
and can be set either at install time, or using this control.

� Directionality : allows you change the value (left-to-right/right-to-left) that you supplied when
you indexed the corpus.

© 2020 Andrew Hardie and contributors 52

CQPweb System Administrator’s Manual 3 THE SYSTEM ADMINISTRATOR’S INTERFACE

� Collation mode for word-type comparison: see
〈〈

XREF to a part of the manual discussing colla- TODO

tion & case-sensitivity
〉〉

� Colour scheme: allows you to change the colours used in the corpus interface.

� Amount of context shown in concordance: you can specify the width of the concordance either
in words, or relative to any XML element.

� Initial/Maximum words in extended context : you can specify more/less words here based on, for
instance, whether or not your users have the necessary permissions to see extended excerpts of
the corpus data.

� Word annotation for alternative view : this is explained in section 10.2.

� Hide empty values in alternative view : this is explained in section 10.2.

� Corpus category : see section 6.17.

� Visibility of the corpus: visible corpora are listed on the homepage; invisible corpora aren’t.
However, an invisible corpus is listed on the “Corpus permissions” page of any user who has
been granted the privilege to use that corpus.

� External URL: if you specify a link here, it will be rendered in the left-hand menu as a link
under the Corpus info heading. The idea is that you would provide here a link to some online
documentation about the corpus, if any such exists, to allow users to go straight to the relevant
information. You can use an embedded page (see

〈〈
XREF

〉〉
). TODO

� Primary text categorisation: this is explained in the chapter on metadata, specifically section〈〈
XREF

〉〉
. TODO

Below these options are the corpus metadata controls; see
〈〈

crossref
〉〉

. TODO

3.3.2 Manage access

This menu item presents some information relating to the access that users have to the corpus.

The corpus-access privilege system is explained in section 11.5.1. Privileges cannot be manipulated
from here - this must be done via the Admin Control Panel (links are provided to the appropriate
screens in the CP).

However, here you can find two things that are not always easy to spot within the full list of privileges:

� A list of all privileges that affect access to the the corpus, together with a list of the groups and
individual users to which those privileges are granted.

� A full combined list of all users with access to the corpus, whether they have it from a membership
in one or more groups, or as individuals; duplicates are removed (that is, if Group A and Group
B both have access to the corpus, and User X is a member of both A and B, you will see User
X listed here only once).

3.3.3 Manage text metadata〈〈
section not written yet

〉〉
TODO

© 2020 Andrew Hardie and contributors 53

CQPweb System Administrator’s Manual 3 THE SYSTEM ADMINISTRATOR’S INTERFACE

3.3.4 Manage text categories〈〈
section not written yet

〉〉
TODO

3.3.5 Manage corpus XML〈〈
section not written yet

〉〉
TODO

3.3.6 Manage annotation〈〈
XREF to section in the chapter on linking CEQL to annotation, or XREF from that to here?

〉〉
TODO

3.3.7 Manage parallel alignment

The controls found in this section are explained in chapter 8; see especially 8.5.

3.3.8 Manage frequency lists〈〈
section not written yet

〉〉
TODO

3.3.9 Manage visualisations

The controls found in this section are explained in chapter 10.

3.3.10 Add corpus data〈〈
section not written yet

〉〉
TODO

3.3.11 Corpus setup notes

When a corpus is first installed, a record is made of the output of different tools involved in the
installation process. This includes commands sent to, and messages produced by, the CWB command-
line corpus management tools. This information in retained in case something works incorrectly in
the installed corpus. If that happens, the setup notes can provide hints as to what it is.

The setup notes can be viewed immeidately after corpus installation in the CP, or later via this menu
item. They are not formatted in any particular way - just a sequence of lines of input/output, presented
in the order they were collected.

3.3.12 Cached queries〈〈
section not written yet

〉〉
TODO

3.3.13 Cached databases〈〈
section not written yet

〉〉
TODO

3.3.14 Cached frequency lists〈〈
section not written yet

〉〉
TODO

© 2020 Andrew Hardie and contributors 54

CQPweb System Administrator’s Manual 4 MANAGING THE CQPWEB DATA CACHE

4 Managing the CQPweb data cache

4.1 Introduction

CQPweb is built around a strategy of extremely aggressive caching of dynamically generated data.

The core CWB system does not employ caching. In general, any part of the corpus data is only stored
once, in the CWB index; whenever a query is run, or data is requested in any other format, it is
retrieved anew from the CWB indexes - even if the same data has been requested recently. (That said,
CWB benefits from the fact that modern operating systems, and especially the Unix systems that it
is primarily designed for, cache disk content in RAM automatically.) CWB indexes are designed to
be maximally compact on disk, even if this complicates or slows down retrieval.

By contrast, CQPweb is designed with the assumptions that (a) the same requests will often be made
many times in a row, and (b) speed of response to requests is the most important thing (far more
important than minimising the use of disk space). These assumptions are rooted in its origin as a
teaching tool: a common use-pattern for CQPweb is a roomful of students, working on the same
data, and all doing pretty much the same kinds of queries. In this situation, caching all generated
data (queries, ad hoc frequency lists, and more) leads to a substantial performance improvement, as
resource-intensive processes only run once. For every user other than the first to run a particular
process, response time is much faster; the dynamically generated data does not need to be rebuilt
from the underlying corpus indexes, it merely needs to be retrieved from the cache.

This chapter explains the different kinds of data that CQPweb caches, and discusses aspects of cache
administration that apply especially to large, multi-user installations.

4.2 Some background on the SQL system

CQPweb uses an SQL database (MySQL/MariaDB) as its secondary datastore. The CWB indexes
contain the main corpus data, but all ancillary data (corpus and text metadata, frequency lists, analysis
data for collocation/distribution/etc., cached queries and analyses, user data like categorised queries,
as well as CQPweb’s system management data) is stored in the SQL database.

To understand the ways this database - especially its caches - can be configured, some background on
these SQL database systems is needed. Beware! This is a very incomplete account of what is actually
going on in the SQL database management system, focused on the points relevant to CQPweb. For
the full details, see the online manuals for MySQL and MariaDB, the two SQL systems that CQPweb
can use.

� Originally, CQPweb relied on MySQL. It could not be used with any other SQL database system.

� MariaDB is a “fork” of MySQL: that is, a direct descendent of an earlier version of MySQL.

� Thus, MariaDB is similar enough to MySQL that CQPweb can use either one without problem.

� MariaDB shares so much ancestry with MySQL that its programs, data directories, etc. are
usually labelled “mysql”.

� As of 2019, the main difference between them that matters for CQPweb is that MySQL has a
more extensive range of Unicode collations for utf8mb4-encoded text.

� Thus, unless otherwise specified, please assume that any comment in this manual on MySQL
applies equally to MariaDB.

© 2020 Andrew Hardie and contributors 55

CQPweb System Administrator’s Manual 4 MANAGING THE CQPWEB DATA CACHE

MySQL is a client-server database management program: a server or “daemon” called mysqld does the
actual work of creating, modifying and searching the databases; the daemon is always accessed via a
client program which interacts with the user, issues requests to the daemon, and handles the responses
sent back by the daemon. CQPweb itself acts as a client to the MySQL daemon, but some actions
involved in administering CQPweb involve accessing the daemon via the MySQL command-line client
(called mysql). An example is the process of creating CQPweb’s MySQL database in the first place,
as described in an earlier chapter.

Most of the time, a database can be treated as an abstract entity which we control without worrying
about the details of what the daemon is actually doing. However, when considering the performance
issues that arise on large, heavily used installations of CQPweb (and similar programs) it is necessary
to dig in to what the MySQL daemon is doing behind the scenes.

The MySQL system stores all the actual data using one of two “engines”.1 The older of these is
MyISAM; the newer is InnoDB (or, in some versions of MariaDB, InnoDB’s near relative XtraDB).
Each separate table within a database can be set to use a different engine. The databases and tables
are ultimately represented by various disk files (though while the SQL daemon is running, there is not
necessarily a guarantee that all important information has actually been written to disk at any given
moment!), as follows:

� The MySQL daemon has a dedicated directory on disk for its data (its location is set in the
daemon’s configuration options; the default location varies across operating systems, but on
many Linux systems it is something like /var/lib/mysql).

� For each database that is created, a folder is created with the same name as the database, directly
within that dedicated directory. So, if we create a database called cqpwebdb, its folder would
be /var/lib/mysql/cqpwebdb (with the first part, again, depending on the OS).

� For each table within the database, a .frm file is created, which contains the table definition,
but not the actual data.

The location of the actual table data depends on the engine; furthermore, InnoDB can locate its data
in two different places depending on whether a mode called file-per-table is switched on or not.

� MyISAM stores actual table data in the same place as the .frm file, in two extra files with
the same name, but different file extensions (.MYD and .MYI). So, for instance, if the table
corpus info uses the MyISAM engine, the database directory will contain corpus info.frm,
corpus info.MYD and corpus info.MYI.

� InnoDB with file-per-table mode switched off stores all the data for all InnoDB tables from all
the different databases in a single location called the “global tablespace”. This takes the form
of a single file called ibdata1, which will be found directly under MySQL’s main data directory.
The ibdata1 file will therefore be very large!

� InnoDB with file-per-table mode switched on stores the data for each table in a separate .ibd

file, which is placed (by default) alongside the .frm file - although it is possible for a separate
location for the .ibd file to be specified when the table is originally created. With this setup,
there will still be an ibdata1 file but it will be much smaller as it will not contain actual table
data.

MyISAM was the default in older versions of MySQL; later, InnoDB became the default (in both
MySQL and MariaDB). Initially, InnoDB’s default setting was to have file-per-table switched off. In

1There are actually a whole lot of engines, but MyISAM and InnoDB are the only two that matter in practice.

© 2020 Andrew Hardie and contributors 56

CQPweb System Administrator’s Manual 4 MANAGING THE CQPWEB DATA CACHE

recent versions of MySQL/MariaDB, file-per-table mode is on by default. It is generally agreed that
InnoDB with file-per-table switched on is the best way to store table data in most cases, if you are
using an up-to-date version of MySQL/MariaDB.

CQPweb is, in general, designed to work with the default settings of MySQL/MariaDB. What that
means is that originally it was built with the assumption that most tables would be MyISAM; later
it was modified to force most tables to be in InnoDB, once InnoDB became preferred. It did not,
however, make any difference to CQPweb whether file-per-table was on or off until version 3.2.14,
when it became possible (as described below) to store different types of data in different locations.
This new functionality depends on file-per-table mode being switched on.

To find out what the default engine is on your system, enter the following command in the SQL client:

� show engines;

This will display a list of available engines with additional information. The key column is “Support”:
in this column, the word DEFAULT will appear next to one of MyISAM or InnoDB.

To find out whether your SQL daemon has the InnoDB file-per-table mode switched on, enter the
following command:

� show variables like "innodb_file_per_table";

However, it’s important to note that these settings only represent the present situation. If your
CQPweb server has been running for a while, especially if it’s been running for over one year, it’s
quite possible that these settings could have been different in the past. In that case, any data that
was setup under the old settings will not have been updated to the new settings.

� If your CQPweb server used to run on a version of MySQL where MyISAM was the default
engine, any old tables created as MyISAM will still be MyISAM.

� On the InnoDB side, if file-per-table mode is switched on but used to be switched off, any tables
created in the global table space will still be located there.

In either case, your database will contain tables running on a hodgepodge of engines and table spaces.

An administration script has been provided that will fix these issues2: see 5.7 on force-innodb.php.

2There is an important thing to remember if you formerly used InnoDB without file-per-table, and have switched to
InnoDB with file-per-table. This is that forcing all the existing tables out of the ibdata1 file and into their own files will
not result in the ibdata1 file getting any smaller - since it never gets smaller.

So, for instance, if you have a 100GB ibdata1 file, then switch on file-per-table and force the tables out into their own
file, the result will be a 100GB ibdata1 file as well as 100GB of separate table files.

The only way to reclaim disk space from the ibdata1 file is to export all your SQL databases using the mysqldump

program; drop all the databases from the SQL daemon; delete the ibdata1 file; and then re-insert the databases from
the exported file.

This is, it should go without saying, a somewhat dangerous process. It’s also outside the scope of this manual, so no
more will be said about it here - but see the following links for some discussion:

� Relevant pages in the MySQL manual (v5.7, other versions linked from there)

– http://dev.mysql.com/doc/refman/5.7/en/using-innodb-tables.html

– http://dev.mysql.com/doc/refman/5.7/en/innodb-multiple-tablespaces.html

– http://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html

– http://dev.mysql.com/doc/refman/5.7/en/mysqldump-sql-format.html

– http://dev.mysql.com/doc/refman/5.7/en/reloading-sql-format-dumps.html

© 2020 Andrew Hardie and contributors 57

http://dev.mysql.com/doc/refman/5.7/en/using-innodb-tables.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-multiple-tablespaces.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html
http://dev.mysql.com/doc/refman/5.7/en/mysqldump-sql-format.html
http://dev.mysql.com/doc/refman/5.7/en/reloading-sql-format-dumps.html

CQPweb System Administrator’s Manual 4 MANAGING THE CQPWEB DATA CACHE

4.3 Explaining the different types of cached data

Let’s consider the data cached by CQPweb under broad categories〈〈
explanations of the different caches

〉〉
TODO〈〈

explanation of what is cached in corpus setup
〉〉

TODO〈〈
on the restriction cache: maybe add note - more RAM may e needed if there are restrictions based TODO

on XML elements.
〉〉

4.4 Disk locations for stored data〈〈
discussion of how the locations of these caches affects performance - multiple disks etc. Advising on TODO

partitioning etc
〉〉〈〈

the config settings to use for each location
〉〉

TODO〈〈
how do we move one of the caches once it’s already in a place?

〉〉
TODO

It’s important to note that setting the location of one of the SQL DB caches will only work if you
have InnoDB’s file-per-table mode switched on; see section 4.2.

https://dev.mysql.com/doc/refman/5.7/en/tablespace-placing.html

4.5 Moving the cache location on an existing CQPweb server

The process for moving a cache folder is different for caches involving files and caches involving SQL
tables.

https://blogs.oracle.com/mysqlinnodb/entry/choose_the_location_of_your

4.6 Optimising the SQL DB for cache performance〈〈
this might get hived off into a seaprate chapter on optimisation since it’s a bit of a shift of topic for TODO

this one
〉〉〈〈

this section currently just contains rough and badly typed notes
〉〉

TODO

Lots of useful stuff here: http://dev.mysql.com/doc/refman/5.7/en/

converting-tables-to-innodb.html

Cover here things like this:

innodb flush method=O DIRECT innodb log file size=1G innodb buffer pool size=4G

flush method – setting this to O DIRECT measn that read/write access is direc tot disk without suing
the OS’s disk cache in RAM. This apparently improves performance if the SQL DB has lots of RAM
to cahce disk stuff in, (in which case the OS cache will be small and twatty.)

It is named after the Linux flag that it causes mysqld to use wiht innodb files. Here is a quote from
man open(2): O DIRECT (Since Linux 2.4.10) Try to minimize cache effects of the I/O to and from

� Discussions on StackOverflow and StackExchange/DBA:

– http://stackoverflow.com/a/4056261

– http://dba.stackexchange.com/a/24963 - on the general process

– http://dba.stackexchange.com/a/2227 - on exporting the databases

(all links correct as of April 2016).

© 2020 Andrew Hardie and contributors 58

https://dev.mysql.com/doc/refman/5.7/en/tablespace-placing.html
https://blogs.oracle.com/mysqlinnodb/entry/choose_the_location_of_your
http://dev.mysql.com/doc/refman/5.7/en/converting-tables-to-innodb.html
http://dev.mysql.com/doc/refman/5.7/en/converting-tables-to-innodb.html
http://stackoverflow.com/a/4056261
http://dba.stackexchange.com/a/24963
http://dba.stackexchange.com/a/2227

CQPweb System Administrator’s Manual 4 MANAGING THE CQPWEB DATA CACHE

this file. In general this will degrade performance, but it is useful in special situations, such as when
applications do their own caching. File I/O is done directly to/from user-space buffers.

buffer pool size - this is InnoDB’s interenal cache of stuff from disk. The default is 128MB. The manual
says that on a deidcated box, you’d set it to 80% of the avaialble RAM. The percona performance
blog says that ideally you’d have as much RAM in the buffer pool as the DB takes on disk. Obvs in
the case of CQPweb that’s a no go. But it can certainly be more than 128MB. Given the RAM we
have, I gave it 2GB for now

innodb log file size – the MySQL manual says it can b e up to 1/2 of the buffer pool.

THERE SEEM TO BWE TWO CHOICES....... 1 Don’t use O DIRECT, use a small buffer tool -
InnoDB does not do RAM caching of disk stuff, we rely on OS caching. 2 Use O DIRECT and a
mdoerately hefty buffer - InnoDB will cache some of the disk stuff in its buffer pool and we bypass
the OS cache.

But note this helps READS more than it helps WRITES I think!

Discuss relationship of this to OS RAM caching of the CWB index files.

SEE: http://dev.mysql.com/doc/refman/5.7/en/disk-issues.html〈〈
end of rough and badly typed notes

〉〉
TODO

4.7 User-data cache sizes〈〈
recommendations on disk space to allolcate: e4xplain the defauylt size allocation of 6GB per cache, TODO

and point out that a single-user installation might well want to drop this.
〉〉

4.8 Finding and fixing cache leaks

A cache leak is the term we use for any situation where something goes wrong in the creation or
management of cached data or temporary data such that CQPweb can no longer control the data and
delete it where appropriate.

This can happen, for instance, if CQPweb is interrupted halfway through running. For instance, if
CQPweb aborts halfway through a cache cleanup, it is possible that the record of some block of cached
data might be deleted but the block of data itself retained (or vice versa).

In either case, the data becomes “invisible” to CQPweb’s normal cache-management procedures, but
will still be present, not being used but taking up disk space. This can have one of two negative
consequences:

� Leaked data blocks can fill up your disk space if they have completely escaped monitoring.

� Conversely, if the leaked data blocks are still counted towards the size of your cache, they
constitute a fraction of the cache that can never be used by actual productive data.

The very nature of “leaked” cache data or cache records, with imperfect or incomplete tracking, means
that it would not be safe for CQPweb to attempt to clean them up manually - there would be a risk
of data loss. However, tools are provided to assist you in cleaning up cache leaks.

To monitor and manually delete leaked items, go to one of the five functions at CP >Cache control.
There is one for each type of cached data. Each is slightly different depending on the nature of the
cache it covers. Each of these functions also gives you some information about the size of the cache
and how full it is. Once a CQPweb server has been running for a while, most of the caches will become

© 2020 Andrew Hardie and contributors 59

http://dev.mysql.com/doc/refman/5.7/en/disk-issues.html

CQPweb System Administrator’s Manual 4 MANAGING THE CQPWEB DATA CACHE

about 100% full and stay at that level. This is the expected behaviour - it means you are getting the
maximum benefit from the disk space allocated to these caches.

The cache control functions often take quite a long time to display. This is because generating
information about possible leaks invovles searching the whole of the cache. So don’t worry about
this.

© 2020 Andrew Hardie and contributors 60

CQPweb System Administrator’s Manual5 ADMINISTERING CQPWEB FROM THE COMMAND LINE

5 Administering CQPweb from the command line

5.1 Introduction

Several actions that you can take as a system administrator are more conveniently undertaken outside
the web interface, or else cannot be exposed in the web interface for reasons of security. These actions
are instead available from the command line using scripts in CQPweb’s bin directory (one of the
subdirectories from the base CQPweb directory).

All the scripts in this folder are straightforward CLI scripts written in PHP. Some are interactive (that
is, they will require user interaction as they run); others will simply run on their own and then finish.

Some of these scripts run within a complete CQPweb environment; that is, they read in the config-
uration file, create a connection to the SQL daemon, and so on. For that reason, they all need to
be run from within one of the subdirectories of the base CQPweb directory. If the script is intended
to operate on some specific corpus, then you should change your working directory to that corpus’
directory, and call the script as follows:

� php ../bin/name-of-script.php

Alternatively, for scripts that do not refer to a particular corpus, your working directory should be
the bin directory itself. The script is then called as follows:

� php name-of-script.php

Scripts which write files (e.g. autoconfig.php, load-pre-3.1-privileges.php) need to have write
access to the CQPweb directory. You have three choices:

� Run them as the username under which the webserver runs (i.e. the user that owns the CQPweb
directory);

� Run them as some other username, making sure that this user has write access to the CQPweb
directory;

� Run them as root, changing ownership of the resulting files to the webserver user afterwards.

In the remainder of this chapter, the details of each of the scripts are explained.

5.2 The main cqpweb script

This is an executable that allows you to call any function from CQPweb’s internal function library. If
you wish to call a function that relies on being run in the environment of a specific corpus, run the
script from that corpus’ folder; otherwise run it from bin.

The syntax is as follows:

� ./cqpweb NAME OF FUNCTION ARG1 ARG2 ...

It is difficult to provide any general comments since this script can do almost anything. Here are some
examples of useful calls.

© 2020 Andrew Hardie and contributors 61

CQPweb System Administrator’s Manual5 ADMINISTERING CQPWEB FROM THE COMMAND LINE

� ./cqpweb add corpus to privilege scope PRIVILEGE-INTEGER-ID CORPUS-HANDLE

� ./cqpweb remove corpus from privilege scope PRIVILEGE-INTEGER-ID CORPUS-HANDLE

� ./cqpweb create corpus default privileges CORPUS-HANDLE

� ./cqpweb add new privilege 1 "" "Permission to use at restricted level

(initially has scope over no corpora, they can be added later)"

� ./cqpweb add new privilege 2 "" "Permission to use at normal level "

� ./cqpweb add new privilege 3 "" "Permission to use at full level "

� ./cqpweb add new privilege 4 5000000 "Permission to create freq lists up to 500K

tokens"

� ./cqpweb grant privilege to user USERNAME PRIVILEGE-INTEGER-ID

� ./cqpweb grant privilege to group GROUP-NAME PRIVILEGE-INTEGER-ID

� ./cqpweb remove grant from user USERNAME PRIVILEGE-INTEGER-ID

� ./cqpweb remove grant from group GROUP-NAME PRIVILEGE-INTEGER-ID

� ./cqpweb update corpus visualisation gloss CORPUS-HANDLE

1-OR-0-FOR-SHOW-IN-CONCORDANCE 1-OR-0-FOR-SHOW-IN-CONTEXT P-ATTRIBUTE-HANDLE

� ./cqpweb update corpus visualisation translate CORPUS-HANDLE

1-OR-0-FOR-SHOW-IN-CONCORDANCE 1-OR-0-FOR-SHOW-IN-CONTEXT S-ATTRIBUTE-HANDLE

� ./cqpweb add variable corpus metadata CORPUS-HANDLE ATTRIBUTE-DESCRIPTION

VALUE-CONTENT

� ./cqpweb update corpus title CORPUS-HANDLE "new title goes here"

5.3 autoconfig.php

Creates a configuration file with just the essential configuration variables.

This script is interactive, that is, it asks you questions and requires you to type in the configuration
values that you want to appear in the finished file.

This script is also discussed in section 2.4.

Note that prior to version 3.1, this script also performed a variety of miscellaneous set-up actions.
These are now performed by autosetup.php.

5.4 autosetup.php

This script is used in the process of setting up a new CQPweb installation. It is described in section
1.14.

Like autoconfig.php, it is interactive.

5.5 cli-lib.php

This is not a script, it is a library file used by the other command-line scripts. It is mentioned here
simply so that you know not to try and run it! (Nothing bad will happen if you do, in fact nothing at
all will happen if you do.)

© 2020 Andrew Hardie and contributors 62

CQPweb System Administrator’s Manual5 ADMINISTERING CQPWEB FROM THE COMMAND LINE

5.6 execute-cli.php

This script allows you to call any function from CQPweb’s internal function library. If you wish to
call a function that relies on being run in the environment of a specific corpus, run the script from
that corpus’ folder; otherwise run it from bin.

This is the backend behind the cqpweb executable (see 5.2). It is used in exactly the same way.

The syntax is as follows:

� php execute-cli.php NAME OF FUNCTION ARG1 ARG2 ...

It is difficult to provide any general comments since this script can do almost anything. Needless to
say, you really need to know exactly what you are doing before you start messing with this script.
Caveat emptor.

5.7 force-innodb.php

This script forces all tables in CQPweb’s SQL database to use the InnoDB engine, instead of the older
MyISAM engine. For an explanation of these engines, see 4.2.

The script operates by running the following command on each table:

� alter table name of table ENGINE=InnoDB

The effect of this command is discussed in the MySQL manual here https://dev.mysql.

com/doc/refman/5.7/en/alter-table.html and here http://dev.mysql.com/doc/refman/5.7/

en/converting-tables-to-innodb.html .

Run this script in the following situations:

� Your CQPweb installation is an old one, from before CQPweb began enforcing the use of InnoDB,
and contains MyISAM tables.

� You have switched your MySQL server from using the InnoDB global tablespace to using file-
per-table mode and want to force your existing tables out into their own files.

Certain tables require support for fulltext indexes, which was added to InnoDB only in 2013. If you
are using an old version of MySQL whose InnoDB engine lacks this feature, any tables that need it
will not be touched by this script; they will be “held back” as MyISAM.

5.8 install-corpus.php

This script installs a new corpus. It has an internal manual explaining how to call it, which you can
see by running:

� php install-corpus --help | less

(for “less” substitute Your Favourite Pager)

Fundamentally, each of the options to thes script replicates one of the form elements on the relevant
page in the Admin Control Panel.

© 2020 Andrew Hardie and contributors 63

https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
http://dev.mysql.com/doc/refman/5.7/en/converting-tables-to-innodb.html
http://dev.mysql.com/doc/refman/5.7/en/converting-tables-to-innodb.html

CQPweb System Administrator’s Manual5 ADMINISTERING CQPWEB FROM THE COMMAND LINE

5.9 load-pre-3.1-groups.php

Prior to version 3.1 of CQPweb, information about what user groups exist, and what users belong to
each, were stored in Apache .htgroup files (and if you were not using Apache, you were out of luck).
In version 3.1, this was changed so that groups are instead stored in the database, and Apache is no
longer necessary: CQPweb can manage its own user accounts while running on any webserver.

This script migrates groups automatically from the old system to the new system. You should only
need to run it once, immediately after you upgrade the code and database to version 3.1 (see section
16.3).

This script will ask you to specify interactively the location of the group file. This is the directory
which will have been set as $cqpweb_accessdir in your pre-3.1 configuration file.

5.10 load-pre-3.1-privileges.php

Prior to version 3.1 of CQPweb, corpus access privileges were stored in .htaccess files in the web
directory of each corpus. In version 3.1, this was changed so that privileges and grants are stored
in the database, a much more flexible system. However, this means that lists of permissions in an
existing v3.0 installation would be lost. This script retrieves them.

The script creates the three default privileges for each corpus on the system, if they do not exist
already (access levels normal, restricted and full).

The “normal” access level is intended to be equivalent to the one-and-only access level available in
older versions of CQPweb. For this reason, every group which previously had any access rights for a
given corpus is assigned “normal” access to that corpus by this script.

It should be run after load-pre-3.1-groups.php.

5.11 load-pre-3.2-corpsettings.php

The use of this script is explained in 16.6.

It should be run after upgrading the database as far as v3.2.0.

If the version you are upgrading to is higher than 3.2.0, you need to run the database upgrade script
a second time after running this script.

5.12 offline-freqlists.php

This script should be called as follows:

� php offline-freqlists.php lowercase_name_of_corpus

The script performs all frequency-list setup functions, i.e.e those actions usually performed on the
“Manage metadata” page of the corpus interface, after indexing a corpus and installing its text meta-
data table (

〈〈
XREF

〉〉
). TODO

For very big corpora (hundreds of millions of words or more) this process can take a long time, hours
or even a day or more. In that case it is not convenient to run it from a web browser, and the
command-line version may make more sense.

This script prints a long stream of debug messages to indicate its progress. These can be safely
ignored until and unless something goes wrong. This is not an interactive script and no user attention
is required.

© 2020 Andrew Hardie and contributors 64

CQPweb System Administrator’s Manual5 ADMINISTERING CQPWEB FROM THE COMMAND LINE

5.13 upgrade-database.php

From time to time the CQPweb database format is changed. This script should be run after you
update your code to a new version, and it will implement any necessary database version changes.

This is an interactive program - it will sometimes demand that you acknowledge some alert about
something that has changed by pressing Enter before it will continue.

Note that if you upgrade the code, but do not run this script to bring the database into line, CQPweb
will break (possibly very badly).

The biggest set of upgrades are those between version 3.0.16 and 3.1.0. However, any database upgrade
can potentially take a long time.

If you are running an online server (as opposed to one on a standalone computer!) then it is recom-
mended to take the server offline while you do the upgrade - so that users cannot access your server
while it is in a half-and-half state (which, depending on what they do, might cause data integrity
problems). The easiest way to do this is simply to disable your web sever software temporarily.

See also section 16 for more information on upgrading.

© 2020 Andrew Hardie and contributors 65

CQPweb System Administrator’s Manual 6 INDEXING CORPORA

6 Indexing corpora

6.1 Quick checklist

This chapter is not complete. Until it is, users who are not familiar with the corpus indexing process
may benefit from using this checklist (courtesy of Philipp Heinrich on the CWB Developers Mailing
list).

To create a new corpus, use the following tools in turn:

� In the Admin Control Panel:

– install new corpus

� Inside the new corpus’s UI:

– manage text metadata

– (build CQPweb frequency lists using either “manage frequency lists” or the offline script)

– manage corpus XML

– manage visualisations

– manage annotation - setup CEQL bindings

– check corpus settings

� In the Admin Control Panel:

– manage privileges

– manage user / group grants

6.2 Basic concepts

CQPweb is based, naturally, on CWB corpus indexes. Setting up a corpus for use in CQPweb es-
sentially means indexing a CWB corpus. However, the design of CQPweb means that it has some
specific requirements for the layout of its corpora beyond the basics of CWB. This section is intended
to explain CQPweb corpora to help you prepare appropriate data for input.

A corpus in CQPweb can be characterised in terms of the combination of its texts, its annotations, its
XML, and its metadata.

� Texts are the fundamental organisational unit of CQPweb corpora. They are one type of XML
element, but one that must always be present. Every corpus consists of a sequence of one or
more texts. Texts cannot overlap, or be contained within other texts. All the words in a corpus
must be contained in one of that corpus’s texts.

� Annotations are the different layers of word-level information. This corresponds to the more
general CWB notion of a p-attribute (positional attribute).

� A corpus’ XML corresponds to the more general CWB notion of an s-attribute (structural
attribute).

� Metadata is a set of structured information about some aspect of a corpus, typically its texts
but potentially other kinds of XML as well. Since metadata is a major topic it will be dealt with
in a separate chapter (7).

© 2020 Andrew Hardie and contributors 66

CQPweb System Administrator’s Manual 6 INDEXING CORPORA

When indexing a corpus, it is necessary to specify the corpus’ design in terms of annotation, XML
and metadata, and to make sure that the corpus data to be indexed contains appropriate text tags.
Annotation, metadata and XML can be specified from scratch, or their design can be taken from a
predesigned template.

6.3 The notion of a handle

A handle is a short text label used to refer to any of the following entities in CQPweb:

� A corpus.

� An ID code for a text or an XML region.

� An annotation layer.

� A type of XML.

� A field in a metadata table.

� User account usernames.

� A user-specified save-name.

This notion of handle may be familiar as it is fundamentally similar to the labels used for corpora and
(p- and s-) attributes in CWB/CQP. However, CQPweb enforces certain requirements for what is and
is not a valid handle.

� Each type of handle is limited to a certain, short length (see below)

� Handles can only include certain characters: ASCII letters, ASCII digits, and the underscore
character (i.e. the same rules as for “words” in regular expressions, or for identifiers in C and
related programming languages).

– Note that this is different to command-line CWB, which allows the hyphen to be part of
an attribute or corpus name in addition to the characters mentioned above.

� Some types of handle (for corpora, annotation/p-attributes, and XML/s-attributes) cannot in-
clude any uppercase letters.

It is necessary to limit the length of handles because of features of the MySQL/MariaDB database
system. When CQPweb installs a corpus, it creates a number of database tables - and handles
associated with the corpus are used to generate many table/column names. Other handles are used
as database keys (and some database keys in CQPweb include up to three handles).

However, MySQL/MariaDB has two important built in limits: (1) Table and field names cannot be
longer than 64 characters. (2) Database key fields cannot be longer than 333 letters. CQPweb has to
limit the length of handles to fit with these constraints. For this reason, there are four broad categories
of handle within CQPweb:

� Handles which can be up to 20 characters in length (because they are used as part of a longer
table name). This limit is applied to:

– Corpus handles.

– Annotation handles (p-attributes).

© 2020 Andrew Hardie and contributors 67

CQPweb System Administrator’s Manual 6 INDEXING CORPORA

� Handles which can be up to 64 characters in length (because they may form the name of a table
column, but will not be embedded in a longer table name). This limit is applied to:

– Handles for XML elements or attributes (s-attributes).

– Handles for metadata field names (any type of metadata).

– Usernames.

� Handles which can be up to 200 characters in length (because they will never be used as part of
a table name, but might be used as part of a longer database key). This limit is applied to:

– Handles for the categories in classification-scheme metadata.

– The save-name of a saved query or subcorpus (but see note below about categorised queries).

� Handles which can be up to 255 characters in length (because they might be used as a database
key on their own). This limit is applied to:

– ID codes for texts and for XML elements.

Categorised queries, although they are a type of saved query, cannot be given names as long as those
of a normal saved query (200). This is because, when a categorised query is separated out to create a
saved query from each of the categories of concordance line, the new name contains the name of the
categorised query combined with the name of the category - so the total length of both combined can
be no more than 200.

In versions of CQPweb prior to v3.2.0, usernames were limited to 30 characters; they can now be up
to 64 characters, as noted above (avoiding the need for a fourth kind of handle).

6.4 File format for corpus data input

CQPweb input data should be in CWB vertical file format (or VRT). This format is described in detail
in the CWB Corpus Encoding Tutorial (available at http://cwb.sourceforge.net/documentation.
php).

These are the essential points:

� The format can be described as a hybrid of TSV (for token data) and XML (for structural data).

� One token per line

� Annotations (word-level tagging) are presented in columns

� Every token must have a value for every column

� Columns left empty are treated as containing an “undefined” value.

� The

�

�

�

�

�

�〈〈
Input file: do by XREF to other docs if possible - the CWB encoding tutorial frinstance.

〉〉
TODO

© 2020 Andrew Hardie and contributors 68

http://cwb.sourceforge.net/documentation.php
http://cwb.sourceforge.net/documentation.php

CQPweb System Administrator’s Manual 6 INDEXING CORPORA

6.5 Linking handles and descriptions〈〈
Explain that wherever there is a handle, it can become a description.

〉〉
TODO

6.6 Annotation〈〈
primary annotation - do we introduce this here, or do we leave it for the section on CEQL?

〉〉
TODO

6.7 Annotation templates

An annotation template is a data structure that describes a set of annotations (that is, p-attributes,
corresponding to columns in the input data).

If you wish to index multiple corpora that have the same annotations, then rather than specify the
details of each annotation every time, you can create and save a template that stores those details and
can then be invoked when a corpus is created.

For instance, one very common pattern of annotations is for the second column of the input file to
contain a part-of-speech tag, while the third contains a lemma (recall that the first column always
contains the wordform of the token). This three-column format is produced by, among others, the
TreeTagger software.

Rather than enter pos and lemma over and over again when setting up corpora, you can create a
template description which describes this three-column format. When you set up a corpus of this
kind, specifying its structure is then as simple as picking your prespecfied template.

(In fact, certain useful templates, including the three-column word, pos, lemma format, are actually
built into CQPweb for you.〈〈

NOTE: explain template creation here by saying the form is the same as the one for corpus setup. TODO

BUT don’t go into the forms for annotation here. that comes under “indexing-proc” below.
〉〉

6.8 XML

(Include here the discussion of “text” as the compulsory element and XREF to “text” as discussed in
“basic concepts”.)

6.9 XML templates

6.10 The indexing process

(all about the form)

(inc use of the non-template forms)

6.11 Using a pre-indexed corpus〈〈
Turn following rough notes into real manual content

〉〉
TODO

Step 1 - index the corpus using command-line CWB (wherever you like on the system,as
long as the files/directories you create are in a location on the file system where the web server’s user
account has permission to read them)

© 2020 Andrew Hardie and contributors 69

CQPweb System Administrator’s Manual 6 INDEXING CORPORA

Step 2 - go to the ”Install new corpus” page in CQPweb, and click on the link at the top that says
”Click here to install a corpus you have already indexed in CWB.”

Step 3 - specify the location of the registry file. (this will be copied into CQPweb’s own registry if not
already there; the index files themselves will not be copied or moved.)

Step 4 - once you’ve installed the corpus thusly, proceed onto the other installation steps (generate
your text metadata from the XML attributes on ¡text¿, or else install a metadata file; setup frequency
lists; etc.)

6.12 The metadata setup process〈〈
short explanantion here only – direct to the next chapter for the full coverage of metadata

〉〉
TODO

6.13 Building frequency lists

Frequency list setup is dependent on the existence of the text metadata table (see (
〈〈

XREF
〉〉

). TODO

Do automatically small corpora

Do bit by bit in web interface

Do offline with script

6.14 Linking annotation to CEQL syntax notation〈〈
explain this!

〉〉
TODO

6.15 Setting up corpus access rights

When a corpus is initally set up, no users except the system administrator(s) will be able to access it.
To enable access, you need to (a) create a privilege that covers use of the corpus, and then (b) grant
that privilege to one or more users or groups.

(xref to “user accts” chapter...)

6.16 Further corpus configuration

There are many settings that can be configured for each corpus after it has been indexed. They are
available via the individual corpus’s interface (not via the Admin Control Panel). When you are
logged on with an administrator account, an additional section will appear in the left-hand-side menu,
labelled Admin tools.

Some of the options on this menu have been discussed already in this chapter, as they are involved
in the setup procedure. Others are discussed elsewhere: for the Manage visualisations option, for
instance, see chapter 10. For a full overview, see section 3.3.

6.17 Putting corpora into categories

An optional step in setting up a new corpus is putting it into a specified category.

Currently, what category a corpus is in affects only one thing: the layout of the list of corpora on the
homepage. If category-based ordering of the homepage is switched on, then the list will be divided

© 2020 Andrew Hardie and contributors 70

CQPweb System Administrator’s Manual 6 INDEXING CORPORA

into sections based on the corpus category feature. What category a corpus is in will determine where
it appears in the list.

See section 2.3.6 for how to set the right configuration variable to switch on category-based organisation
of the home page.

Categories are created and managed in the Admin control panel: CP >Corpora >Manage corpus
categories. The upper part of this screen shows the existing categories. The most important feature
of a category is its sort order, which is represented as an integer, and which determines where it
appears on the homepage. The sort order is a relative number - that is, it doesn’t matter exactly what
the value is, it matters what it is relative to the other categories. The [Move up] and [Move down]
controls can be used to adjust the sort order. Categories can be added using the separate control on
the lower part of the screen.

In the Corpus settings screen for any individual corpus you will find an option to change the category
of that corpus. When they are first indexed, all corpora are placed in the default “Uncategorised”
category, and will stay there until you move them.

Within each category, corpora are listed in alphabetical order of the corpus handle - note this is not
necessarily the same as the descriptive name, which is what is actually displayed!

Finally note that if a corpus is set to be invisible, it doesn’t matter at all what category it is in.

© 2020 Andrew Hardie and contributors 71

CQPweb System Administrator’s Manual 7 METADATA

7 Metadata

7.1 Introduction〈〈
(introductory explanation of what it is, how it is stored, where it appears in the interface)

〉〉
TODO

In CQPweb, metadata is a covering term for data about an indexed corpus, about the the texts in a
corpus, or (sometimes) about individual instances of XML elements.

The underlying CWB system does not provide an easy way to store and manipulate metadata. For
that reason, CQPweb uses its SQL database to store and manipulate all metadata.

Metadata, especially text/XML metadata, is crucial to several core CQPweb functions:

� Distribution.
〈〈

EXPLAIN
〉〉

TODO

� Restricted queries.
〈〈

EXPLAIN
〉〉

TODO

� Subcorpus creation.
〈〈

EXPLAIN
〉〉

TODO

This chapter explains the different levels of metadata (corpus/text/XML), the different datatypes that
are available, and how they work; how metadata is installed for a corpus; and the use of metadata
templates.

7.2 Corpus metadata

......

(explain corpus metadata, where it is displayed, how to add it)

..........

7.3 Text metadata

.....

Each corpus stores text metadata in a dedicated metadata table.

A metadata table is a database table very much like a table you might create in a spreadsheet. It has
a series of columns, where each column represents a particular field or attribute - that is, a particular
bit of metadata. So, for instance, you might have columns for the author, title and genre of each text.

The rows represent the items described by the metadata table. The first column always contains the
unique identifier for the items. So, in a text metadata table, the first column contains the text ID
code. In CQPweb, text IDs and other identifier codes are always handles (see

〈〈
XREF

〉〉
). TODO

Metadata tables can be loaded into CQPweb from uploaded plaintext files. Alternatively they can be
generated from data already present within the indexed corpus. See

〈〈
XREF

〉〉
below. TODO

7.4 XML metadata

(Explanation of how XML metadata can be applied in different ways)

...

© 2020 Andrew Hardie and contributors 72

CQPweb System Administrator’s Manual 7 METADATA

Unlike text metadata, XML metadata does not normally use a metadata table. So to include XML
metadata, you would normally incorporate it directly into the XML tags in the underlying corpus as
represented in your input file.

The exception to this is metadata for ID-linked XML attributes. Attributes of this kind which do use
a metadata table, which therefore works in a similar way to the text metadata.

This is explained below XREF.

7.5 The different possible datatypes

Currently, CQPweb supports the following datatypes for text/XML metadata fields.

� Free text

� Classification

� Unique ID

� ID-link

� Date (currently under development)

Note that all corpus metadata items are necessarily free text.

7.5.1 Free text

Free text is the most basic kind of metadata. An item of free text metadata can contain any string
(up to a length of 255 bytes), although it may not contain tabs or line breaks. Free text is the best
datatype to use for metadata that can vary across every single item, such as (for a text) the title, the
source URL, and so on - things unlikely to be repeated within the corpus and therefore unsuitable for
encoding as categories within a classification.

Free text metadata fields are allowed to contain links to external resources of one kind or another.
These are detected by examining the “prefix” of the field value, which is the part of the value before
the first colon.

Some of the recognised prefixes are the standard URL specifiers - http, https and so on. This means
that web addresses, inserted without any modification, will “count” as having a prefix, and the special
behaviour will be applied.

Other prefixes are special flags that CQPweb recognises as cues to treat the metadata value as a
particular kind of link to an external resource. The full list of prefixes is as follows:

http This indicates a link to an external resource on the internet. Standard web addresses have this
prefix (or one of the following two). It will be shown as a link in CQPweb. Optionally, the value
can specify the clickable text for the link by adding it after the URL (with the URL and the link
text separated by the pipe symbol, |). If no link text is given, the URL will be used as the link
text.

Example: http://www.site.net/info.html|Explanation

https Works the same as http.

ftp Works the same as http.

© 2020 Andrew Hardie and contributors 73

CQPweb System Administrator’s Manual 7 METADATA

youtube This prefix indicates that the URL is a link to a video on YouTube. This will be rendered
as an embedded YouTube player. The YouTube link does not need to include http:// or www.,
but it’s not wrong if it does! In fact, it’s also possible to give just a YouTube video ID after the
prefix.

Example: youtube:youtu.be/bfhFdffdlsk

video This is a link to a video file; it will appear as an embedded player, with an additional file
download link.

Example: video:http://mysite.com/vid.ogv

audio This is a link to an audio file; it will appear as an embedded player, with an additional file
download link.

Example: audio:http://mysite.com/audio.oga

image This is a link to an image file (of any kind that the browser can open, including PDF for
instance). It will appear as a clickable control which, when clicked, will load the image into an
overlay on the page.

Example: image:../images/orig-text-a1.pdf

no prefix The text of the value will be printed in the interface as-is (but with any HTML code
escaped for the sake of security).

7.5.2 Classification〈〈
this needs more work

〉〉
TODO

Classifications – for items where each text falls into one of a limited number of categories (e.g. written
vs spoken) In this case the field values must be handles (Unix words as described above), NOT multi-
word explanations

A classification can have a maximum of 65,535 different categories.

7.5.3 Unique ID〈〈
explain

〉〉
Unique IDs are handles, so all the rules of handles apply: see

〈〈
XREF

〉〉
TODO
TODO

7.5.4 ID link〈〈
This is where the concept of idlink is explained. Use spoken corpus as the explanation

〉〉
TODO

Notion of INDIRECTION

[datatype = idlink] implies lots of other fields in the associated metadata table, which in turn all have
datatypes

But multiple indirection is not allowed.

AN EMAIL I WROTE ON THE LIST TO EXPLAIN THIS
〈〈

turn this into coherent paragraphs
〉〉

TODO

The idea is that this offers a layer of *indirection* for the XML.

The paradigmatic case of an ID link is speaker metadata.

© 2020 Andrew Hardie and contributors 74

CQPweb System Administrator’s Manual 7 METADATA

In a spoken corpus you have lots of utterances (<u>) and

you very often want to do operations within certain utterances

and not others based on features of the speakers.

EG you might want to search only within speech by males,

or by people in a particular age group.

You COULD add XML attributes for each of these things ie

<u speaker_age="12" speaker_sex="male">Hello!</u>

But this is not a terribly good design, because age/sex are

not features of UTTERANCES, they are features of SPEAKERS.

This speaker will always be male and 12 in this corpus,

so why is it necessary to repeat this on every utterance?

The answer is, it is not.

The IDLINK datatype allows us to model this kind of indirection.

Instead of marking speaker features on utterances,

we can have a separate table for speakers...

ID age sex

===============

A001 12 m

A002 65 f

.... which is then referred to by the IDLINK attribute.

<u who="A001">Hello!</u>

So, instead of the data chain going Utterance -> sex ,

there is another layer of indirection: Utterance -> speaker -> sex.

It’s called an IDLINK because once we declare the datatype of s-attribute

u_who to be IDLINK, we promise CQPweb that an IDLINK metadata table,

with all the right IDs listed, will be available. That is, that the

content of the IDLINK (u_who) always LINKS to an ID that exists elsewhere

(in the Speaker metadata table, which is therefore an IDLINK metadata table).

All this is then opaque to the general user, who can specify " find

instance of word X where speaker is male " in a restricted query, for instance - CQPweb will then

- use the IDLINK table to look up the IDs of the speakers where sex = m

- use the CWB index to find the list of regions in the corpus where u_who

is equal to one or other of those IDs (IE utterances by one of those speakers)

- search within only those regions of the corpus for word X

Note this is SIMILAR to how text metadata works (if you search within genre

"fiction", then CQPweb looks up the texts where the "genre" column contains

"fiction", and searches only within those texts) but not the SAME.

© 2020 Andrew Hardie and contributors 75

CQPweb System Administrator’s Manual 7 METADATA

The key difference is that text_id is a unique identifier, ie each text ID

occurs in the corpus once and exactly once.

However, IDLINKS aren’t unique. There can be many, many utterances where who="A001".

A0001 is unique *in the Speaker metadata table*.

This is why we talk about "u who" as an IDLINK rather than an ID:

it is not an identifier, but something that links to an identifier.

===========================

Currently, it is not possible to have IDLINKS as a datatype for text metadata.

I was uncertain about this decision, as there is a clear use case: where one author

writes many texts within the corpus, it would make sense for the "author" column in

the text metadata table to contain an IDLINK to a separate Author metadata table

which would contain things like author sex, age, domicile etc.

I decided against this for two reasons.

First, this system for doing Restricted Queries based on things like utterances was

already *very* difficult to make work. Making it possible for there to be ANOTHER

layer of indirection might have driven me mad. Wibble.

Second, if you look at corpora in practice, people tend not to mind making the sex

of an author, say, part of the text metadata rather than having the author-people

as a separate data entity. This is the case for the written BNC for instance - in CQPweb’s

predecessor, BNCweb, "sex of author" is a "written restriction" (IE text metadata).

So I just went along with this way of doing it.

now, after all that background, re Chao’s question:

Since the assignments are texts, features of the students

who wrote them could be included as text metadata columns.

And if one text metadata column in a unique id for the speaker,

that makes it easier down the line to track the progress of individual

students (you can say things like "create a subcorpus of texts where student=A001

in module=101, and compare a subcorpus of texts where student=A001 and module=201.

- and do many other comparisons, if you have the right metadata for the texts.)

This is what Jiayue recommended, but hopefully the reasons why what you want here

is text metadata rather than an idlink now make sense.

-----Original Message-----

Subject: Re: [CWB] Example of metadata file?

Hi

My solution would be to use a metadata file (ascii text file, tab

separated values) like this:

© 2020 Andrew Hardie and contributors 76

CQPweb System Administrator’s Manual 7 METADATA

A201 A 201

B201 B 201

C201 C 201

D201 D 201

The first column are the text_id’s; the other columns are used to make

"text categorisation". In this way the four texts are linked clearly to

the same student.

> Hello all,

>

> First time poster and also want to try if my subscription works. I do

> not have any linguistic background, so please be gentle if I am asking

> silly questions.

>

> I am wondering if any one could provide a comprehensive metadata file

> example with some brief explanation on how CQPWeb can utilise the

> information? I am particularly interest in the LinkID part and assuming

> this could be used for threading different articles in a corpus?

>

> In my example, handed in assignments from various semesters are compiled

> as a corpus, each assignment is a text file with a unique text_id. Is it

> possible to give each assignment various linkIDs to show how the student

> progress through all semesters? For instance, student 201 has four

> assignments in semester A, B, C, D. If I associate four columns of

> linkID (A201, B201, C201, D201) on all his four submissions, will I be

> able to analyse the progress/change in words for this individual student

> in CQPWeb?

>

> Not sure if this is how the linkID and other metadata are designed for,

> besides classification and description. Please correct me if this makes

> non-sense.

7.5.5 Date〈〈
(currently under development)

〉〉
TODO

7.6 Metadata templates

Just as you can create templates for particular structures of annotation and XML, and reuse those
templates across corpora, you can do the same for metadata strucut (see

〈〈
XREF prev chapter on TODO

templates
〉〉

),

© 2020 Andrew Hardie and contributors 77

CQPweb System Administrator’s Manual 7 METADATA

7.7 Matadata file format

A metadata input file should be formatted as follows:

� It should be a plain text file.

� The encoding should be UTF-8 (or ASCII).

� The line breaks should match the format of the underlying operating system: CR+LF (U+000d,
U+000a) on Windows, LF (U+000a) on UNIX-like systems.

� The file should not begin with a Unicode “byte-order mark”.

� The data should be arranged in a tabular format, where

– columns are delimited by the tab character;

– rows are delimited by line breaks;

– and therefore, individual values cannot contain either tabs or line breaks.

� The first column must contain the unique ID codes (text IDs for text metadata; the ID-link IDs
for ID-linked metadata).

� No ID code can appear more than once; every text in the corpus must be listed.

� However, it is not necessary for the text IDs to be in any particular order.

� This first column is implicit in the declaration of the metadata; you do not include it explicitly
in the definiton of the metadata (whether declared ad hoc or with a template).

� Every subsequent column represents a metadata field, as described when the metadata is inserted
into CQPweb.

� The file itself must contain no header row.

� If a column contains values for a field of datatype classification, unique ID, or ID-link, then all
its values must be valid handles. See section 6.3.

� If a column contains values for a field of datatype date, its contents must be formatted using
CQPweb’s date formalism.

〈〈
XREF!

〉〉
TODO

� Columns of datatype free text are not restricted in what they can contain, except for the general
rule (noted above) that they may not contain tabs or linebreaks.

� Empty values should be represented as zero-length strings - that is, if there is nothing in a given
field on a given row, then there should simply be nothing between one tab and the next.

This format is often called TSV for “tab-separated values” (by contrast to CSV, “comma-separated
values”, a text-based file format associated with Microsoft Excel).

In SQL terms, TSV is equal to the format required by the LOAD DATA INFILE command with escape-
sequence interpretation turned off within field values (using the command FIELDS ESCAPED BY ’’).
In fact, this is precisely the command that CQPweb uses to load the metadata! See http://dev.

mysql.com/doc/refman/5.7/en/load-data.html for more detail.

© 2020 Andrew Hardie and contributors 78

http://dev.mysql.com/doc/refman/5.7/en/load-data.html
http://dev.mysql.com/doc/refman/5.7/en/load-data.html

CQPweb System Administrator’s Manual 7 METADATA

7.8 Installing metadata

Text metadata needs to be installed for every corpus. Without it, queries don’t work. So this should
be the first thing you do after the CWB indexing process has run to completion (see

〈〈
XREF

〉〉
). TODO

There are four possibilities for creating text metadata:

� From file. The most common approach: install text metadata from a text file on the server.
The structure of the file can be described either by specifying it ad hoc or by referring to a
predetermined metadata template 7.6

� From XML. This approach translates the values of one or more XML attributes, encoded in the
CWB index as s-attributes, into fields of text metadata.

� Minimalist. This is the approach to use if you do not have or do not want to use any text
metadata. It sets up the text metadata structure in the database, allowing queries to work, but
leaves that structure empty.

All

Minimalist

From file Using template

From file ad hoc

From XML

After you install text metadata, the Manage metadata page for the corpus will change. Instead of
showing options for installing the text metadata table, it will show a single control allowing you to
Reset the metadata table (i.e. delete it, allowing reinstallation). It should be noted that this involves
total loss of the existing data!〈〈

Manage text caTEGOIRIES
〉〉

TODO

Under Admin tools – manage text categories

Briefly,

- this page will give you a form for each text-metadata field that was installed with the datatype
”classification” - each of these forms will list all the category handles that exist within the given
classification - by default, category handles are mapped to a ”description” that is the same as the
category handle itself

XREF to notion of “descroptin” in prev chap/.

- BUT you can use the forms here to change the category descriptions to something more user-friendly
- since category handles are limited to short codes with no spacing or punctuation this is often useful
- if you do this, then the ”descriptions” will show up in a whole lot of different places in the user
interface instead of the category handles, including: – restricted query form – concordance header for
a restricted query – distribution display – text metadata page.〈〈

installing idlink metadata
〉〉

TODO

© 2020 Andrew Hardie and contributors 79

CQPweb System Administrator’s Manual 8 PARALLEL CORPUS DATA

8 Parallel corpus data

8.1 Introduction

CQPweb supports parallel corpora as of version 3.2.22. This chapter explains how to link parallel
corpora together, and how the display works once the alignments are set up.

8.2 Setting up parallel corpora

Parallel corpora are linked by the existence of alignment attributes (a-attributes for short) in CWB. For
a full understanding of how a-attributes work, you are referred to the CWB documentation, especially
the Corpus Encoding Tutorial.

The key feature to note about a-attributes is that they presuppose the existence of a pair of corpora,
a source (to which the a-attribute belongs) and a target (at which the a-attribute points).

This means that, unlike other corpus data attributes, a-attributes cannot be created when a corpus is
indexed into CWB; they must be added afterwards.

CQPweb builds on this procedure. Parallel corpus data is managed as follows:

� First, install the two corpora separately in CQPweb.

� Second, use command-line CWB tools to generate the a-attribute(s).

� Finally, return to CQPweb to register the alignment.

A note. If you install a corpus that has already been indexed via command-line CWB, it’s possible
that the corpus will already have one or more a-attributes. If so, these a-attributes will be ignored
by CQPweb when it imports that corpus’s registry data. This is because there is no guarantee at
the point of installation that the target corpora for those a-attributes have also been imported into
CQPweb - so it would be dangerous to register the a-attributes. In short, it is still necessary in such
a case to register the alignment within CQPweb as a separate action.

8.3 Naming alignment attributes

A-attributes always have the name of the target corpus. So if you have two corpora corpus a and
corpus b, which represent the same texts in Language A and Language B respectively, then an a-
attribute from source corpus a to target corpus b will have the attribute name corpus b but will
belong to corpus a.

Since a-attribute handles are actually corpus handles, they necessarily have names that follow the
corpus handle rules. Note in particular that they cannot contain hyphens. The CWB encoding
tutorial recommends the use of hyphenated ISO language codes when using parallel corpora, e.g.
somecorpus-en and somecorpus-fr for the English and French parts of a parallel corpus respectively.
For use in CQPweb, however, this practice should not be followed. However, an underscore can be
used instead if you wish (i.e. somecorpus en and somecorpus fr).

It’s especially worth noting that the sample Europarl parallel corpus made available for download on
the CWB website (http://cwb.sf.net) follows this convention. Both the Europarl corpora, and the
a-attributes they contain, need to be renamed to use underscores instead of hyphens before they can
be imported into CQPweb.

© 2020 Andrew Hardie and contributors 80

http://cwb.sf.net

CQPweb System Administrator’s Manual 8 PARALLEL CORPUS DATA

8.4 Creating alignment attributes

There exist multiple methods for indexing alignment attributes. They are discussed in the CWB
Corpus Encoding Tutorial. All basically revolve around identifying (sets of) ranges of corpus
positions which are considered to be “aligned”, i.e. translation-equivalent, across a pair of parallel
corpora. An a-attribute contains the data for such a mapping.

CQPweb does not currently have a web-based interface to the alignment generation and importation
tools. You must use the command-line tools directly.

The steps are as follows:

� Either create or appropriately reformat the alignment data ready to be imported.

� Create an a-attribute using the appropriate encoding utility.

� Modify the registry file for the source corpus to add a declaration of the new a-attribute (some
tools for a-attribute creation do this for you).

In CWB, alignments of a pair of parallel corpora can be, but do not have to be, bidirectional. That
is, creating an a-attribute for corpus b within corpus a only creates an A-to-B link; no B-to-A link
will exist unless you also create an a-attribute for corpus a within corpus b. CQPweb replicates this
feature of the underlying system: it supports both scenarios, i.e. things will work just fine with either
one-way or two-way links.

Also as in the underlying CWB, it’s entirely possible for a CQPweb corpus to have more than one
a-attribute, where each one has as its target a different parallel dataset.

Finally it should be noted that the character encodings of any pair of corpora need to be identical or at
least compatible (e.g. ASCII/Latin-1). CQPweb normally abstracts away differences in the character
encoding of the CWB index - regardless of what encoding the index uses, CQPweb works in UTF-8.
However, parallel corpora represent the one case where this doesn’t work. If corpus a is in Latin-1
and corpus b is in Latin-2, for instance, then the text of the latter will be treated in all corpus display
functions as if it were Latin-1 - which will be wrong. The preferred solution to problems arising here
is to use UTF-8 for all sets of corpora which must be linked together as parallel.

8.5 Registering alignment attributes with CQPweb

Once you have created the a-attributes, you must then register them with CQPweb.

This is done using a one-button control that can be found within the Corpus Admin Tools, on the
Manage parallel alignment page. The button, labelled Click here to scan the registry for newly-
added alignments, does exactly what it sounds like it does!

To be more specific, when this function runs, the following happens:

� CQPweb loads the corpus’s registry file.

� It searches the registry of a-attribute declarations.

� It subjects any that it finds to two checks.

– First, does a corpus by the name of that attribute exist in CQPweb?

– Second, is the alignment already registered within CQPweb?

� If the answers to these two checks are Yes and No respectively, the alignment is registered.

© 2020 Andrew Hardie and contributors 81

CQPweb System Administrator’s Manual 8 PARALLEL CORPUS DATA

Once an alignment is registered, it will appear in a table headed Existing alignments on this page.

Unlike other types of attribute, it is not possible to add a long description to be used on screen for
an a-attribute. Instead, the “description” for an a-attribute handle is always the same as the target
corpus’ onscreen title (as specified when the target corpus was indexed, and managed on its Corpus
settings page; see 3.3.1).

8.6 How alignment attributes can be used

Once one or more a-attributes has been registered in CQPweb, it has the following effects on the
behaviour of the system, as seen by all users:

� Various additional controls appear, allowing the user to turn on or off the display of parallel
data in query results, or to switch from one aligned corpus to another.

– An extra dropdown control listing available parallel corpora appears on the query form.

– A similar control is present in the concordance display.

– A similar control is present in the extended-context display.

� When the display of parallel corpus data is activated, it is shown in a separate table row below
the main result in either concordance or extended-context display.

� Options are also available to download one or more parallel corpus regions in the Download query
tool. Parallel corpus data is printed as extra columns in the downloaded text file.

XML visualisations defined for the source corpus (see section 10.4) will be applied to the parallel text
if s-attributes of the same name exist in the target corpus. XML visualisations defined for the target
corpus are always ignored.

Similarly, when the primary annotation for the source corpus is visible, an annotation will only appear
for the parallel text if the target corpus has a p-attribute with the same handle - in which case,
moreover, the annotation shown is always the one whose name matches that of the source corpus’
primary annotation, not the primary annotation of the target corpus.

One final note of warning: the chunk of parallel data displayed is the entirety of the zone of the target
corpus that is aligned to the zone in the source corpus in which the query match is found. This may
be a longer or shorter stretch of text than the co-text shown around the match.

Consider the following two - quite likely! - contingencies.

In concordance view: the width of concordance is very often set in words, whereas alignment is typically
built on top of s-attributes. The whole of an s-attribute unit may be shown for the parallel text, even
if a span of (say) +/- 10 tokens is showing for the main corpus. This is not avoidable, as there is no
way to reduce the size of the unit of parallel co-text; any reduction might easily exclude the part of the
parallel text that actually relates to the query match. You are recommended to set the concordance
display width to be equal to 1 of whatever unit the alignment is built on (typically sentences), rather
than the default word-based width, in order to mitigate this issue.

In extended-context view: only one unit of parallel text can be shown, and unlike the source-corpus
context, it can’t easily be widened (because, as noted above, only that unit of the target-corpus directly
parallel to the source-corpus unit in which the match appears is returned by CQP when a-attribute
display is switched on).

© 2020 Andrew Hardie and contributors 82

CQPweb System Administrator’s Manual 8 PARALLEL CORPUS DATA

8.7 Parallel corpora and user privileges

To access any data in a parallel corpus (in concordance or extended context, or in a download), a user
must have at least restricted-level access to that corpus.

That is, assuming Corpus A has an a-attribute linking it to Corpus B, that a-attribute will be visible
to the user in the interface for Corpus A only if they have some privilege that allows them access to
Corpus B.

Otherwise, it will appear to the user as if the a-attribute for Corpus B does not exist.

Typically, one would set up the different component corpora of a parallel corpus so that all the same
users and user groups are granted the use of those component corpora.

A user does not need to have access to a parallel corpus to use its a-attribute within the body of a
CQP-syntax query (e.g. as a limiting factor on the query; see the CQP Query Tutorial); this is allowed
even without an access privilege, because it does not involve access to the text of the parallel corpus.
However, this possibility is not openly flagged in the interface; the list of attributes that appears on
the query form only includes a-attributes that can be viewed, omitting any a-attributes that can be
used but not viewed.

© 2020 Andrew Hardie and contributors 83

CQPweb System Administrator’s Manual9 THE COMMON ELEMENTARY QUERY LANGUAGE (CEQL)

9 The Common Elementary Query Language (CEQL)

9.1 Introduction

CEQL is the Common Elementary Query Language, designed by Stefan Evert as a novice-friendly
alternative to the normal CQP query syntax. In the CQPweb interface (and in BNCweb), it is often
referred to as “simple query syntax”.

CQPweb has a built-in PDF handout summarising the CEQL language. A link to this appears next to
the main Standard Query / Restricted Query tools. However, a more complete introduction to CEQL
for the end user may be found in Hoffmann et al., Corpus linguistics with BNCweb.

CEQL has two major features: (1) simplified “wildcards” that make specifying patterns less complex
than with regular expression syntax; and (2) special shorthand for quick access to certain word an-
notations, i.e. Corpus Workbench positional attributes (p-attributes represented by the columns in a
vertical input file).

CEQL is highly configurable. This chapter focuses on how system administrators can activate different
CEQL features on a CQPweb server.

9.2 CEQL syntax: shorthand access to positional attributes

In normal CQP syntax, access to p-attributes is via a transparent but fairly wordy system (Boolean
statements testing the values of different p-attributes, referred to by name). Using it requires knowl-
edge of what p-attributes a corpus has, and what kinds of values they contain. By contrast, CEQL
provides a number of shorthands for frequently used p-attributes

The main CEQL shorthands are as follows.

� pattern search for “pattern” in the default word annotation

� _pattern search for “pattern” in the primary annotation

� {pattern} search for “pattern” in the secondary annotation

� _{pattern} search for “pattern” in the tertiary annotation

CEQL consists of a core grammar which can be extended. The above four query types are part of the
core grammar. CQPweb adds a single extension to the core grammar; this is the following query type:

� {pattern1/pattern2} search for the combination of “pattern1” and “pattern2” in the combi-
nation annotation (or combo annotation for short)

These shorthands were designed around the kinds of annotations typical in English corpora, as they
were initially used within BNCweb, as follows:

� word search for a given word

� _tag search for a given CLAWS5 (BNC-style) POS tag

� {lemma} search for a given lemma

� _{tag} search for a given wordclass (lemma-level POS from the Oxford Simplified Tagset)

© 2020 Andrew Hardie and contributors 84

CQPweb System Administrator’s Manual9 THE COMMON ELEMENTARY QUERY LANGUAGE (CEQL)

� {lemma/tag} search for the combination of the given lemma and the given wordclass

CQPweb was designed with BNCweb user interface compatibility in mind, so that the necessary
functionality to replicate this setup is present. As a general recommendation, it is best to use CEQL
in this default style unless you have a particular reason for doing otherwise

However, CEQL is fully configurable within CQPweb, so these different syntaxes can alternatively be
used to target whatever p-attributes you like. For example, you could make the {pattern} syntax
target a semantic tag, or make the _pattern syntax target a phonetic transcription.

9.2.1 The primary annotation

9.2.2 The secondary annotation

9.2.3 The tertiary annotation

9.2.4 A side note: the Oxford Simplified Tagset

9.2.5 The combination annotation

The {lemma/tag} extension is a response to the fact that lemma headwords are often ambiguous in
English: run is the headword (citation form) for both the verb lemma run (forms run, runs, running,
ran and the noun lemma run (forms run, runs).

Searching for one of these, and not the other, requires access to both lemma form and POS tag. This
is easily accomplished〈〈

more
〉〉

TODO

© 2020 Andrew Hardie and contributors 85

CQPweb System Administrator’s Manual 10 CONTROLLING QUERY VISUALISATION

10 Controlling query visualisation

In CQPweb, visualisation is a covering term for anything to do with how corpus data is rendered
in the web interface, but with particular reference to the display of text around a query hit in the
concordance display and in the extended context display. This chapter describes how the system
administrator can control different aspects of the visualisation process.

10.1 How the primary annotation affects visualisation〈〈
How the primary annotation affects visualisation

〉〉
TODO

10.2 Setting up an “alternate” view for context display〈〈
Setting up an “alternate” view for context display

〉〉
TODO

10.3 Using position labels〈〈
What hey are; quick note on the control

〉〉
TODO〈〈

don’t forget to explain about the span-class they are wrapped in and the possibility of doing things TODO

with extra code files, q.v.
〉〉

10.4 XML visualisations

10.4.1 Introduction

By default, none of the corpus XML (s-attributes) are displayed in either concordance or extended
context view. Nor are they included in downloaded queries. This section explains the use of the XML
visualisation system, which allow you (a) to display corpus XML in query results, and (b) transform
the raw data of the s-attributes into customised HTML for easier interpretation by users.

An “XML visualisation” is a specified mapping from an s-attribute (XML element or combined
element-attribute) to some HTML. These are created through the CQPweb web interface; see 10.4.2.
The mapping takes the form of an HTML template written with a small “whitelisted” subset of HTML,
with all complex features blocked to avoid the risk of Cross Site Scripting (XSS) vulnerability: see
10.4.5.

You can further manipulate the HTML generated by your visualisation with extra code files (see
10.4.6), additional JavaScript or CSS files which you install server-side and which can apply almost
unlimited further styling to the visualised XML.

It should be noted that all XML visualisation operates at the corpus level. That is, the visualisations
you set up for one corpus do not affect any other corpus on the system. Of course, it is easy enough
to copy the HTML code of a visualisation from one corpus’s interface to another’s!

10.4.2 Creating and managing XML visualisations

The interface for creating and managing XML visualisations can be found within the Corpus Admin
Tools, on the Manage visualisations page. This page also contains the controls for field-data display
mode (see section 10.5) and for position labels (see section 10.3).

The various control forms for XML visualisation are towards the end of the page. In order, you will
see:

© 2020 Andrew Hardie and contributors 86

CQPweb System Administrator’s Manual 10 CONTROLLING QUERY VISUALISATION

� The interface for using extra code files: see 10.4.6

� The fallback control: see 10.4.7

� A list of existing XML visualisations

� A form to create a new visualisation command.

To create a new visualisation, you must select the XML element/attribute (s-attribute) that you want
to render, and specify whether you are creating a visualisation to appear at the start of stretches of
text of that type (start tag) or at the end of such stretches of text (end tag).

Next, you need to enter the actual HTML code. See 10.4.5, 10.4.4 for the content you are allowed to
use here. “HTML code” in this context includes any plain text content you might want to use (e.g. a
single punctuation code to visualise the boundary indicated by the XML) - and, as noted below, for
visualisations intended to be used in downloaded queries, it is usually preferable just to use plain text.

Next, you must specify whether the visualsiation is to be enabled (a) in the concordance display, (b)
in the extended context display, (c) in downloaded queries. It’s possible to use the same visualisations
in two or three of the possible places. It’s also possible to use separate visualisations for the same bit
of XML in concordance and/or context and/or downloaded queries.

Finally, you can make the visualisation for a start tag conditional on the value of the XML annotation;
this is explained in 10.4.3.

Once you have created a visualisation command it appears on the list of existing visualisations. The
definition of the target of a visualisation (XML element, start vs. end tag, condition for the value)
cannot be changed once it has been created: if you need to change these, delete the visualisation and
create a new one. However, you can change the HTML code of an existing visualisation, plus of course
activate/deactivate its use in the two relevant displays and/or query download.

10.4.3 Conditional XML visualisations

XML visualisations for start tags can be made conditional on the value of their annotation. This
means that the visualisation only applies when the annotation meets some criterion.

Currently, the only kind of condition that can be applied is a regular expression match. That is, when
you create the condition, you specify a regular expression that the value is compared to. If it matches,
the visualisation is used. If not, not (although if there is another visualisation active with a different
condition or no condition, that one might well apply).

The regex flavour used in the conditions is Perl-Compatible Regular Expressions (PCRE) (the same
regex flavour used by CQP. However, unlike regexes in CQP, the regexes for conditional visualisations
are not anchored: it is not necessary for the regex to match the whole value, only that some part of
the value must match the regex. If your regex pattern includes any forward slashes, you must escape
them with a backslash. This is in addition to all the usual escaping rules for PCRE regexes.

If there is more than one conditional visualisation, then when an XML boundary is rendered, their
conditions are checked in order (the conditional visualisation with the longest regex first, and then by
descending length). The one that takes effect is the first where the condition is fulfilled (i.e. where
the value of the XML attribute contains a match to the regex anywhere within it).

Example use cases for conditional visualisations might include:

� You have an XML attribute with a small number of values - for example, a pragmatic categorisa-
tion of annotated chunks of discourse (question/request/command/statement etc.) You want to

© 2020 Andrew Hardie and contributors 87

CQPweb System Administrator’s Manual 10 CONTROLLING QUERY VISUALISATION

visualise the beginning and end points as square brackets “[...]” in the interface. If you create
a series of conditional visualisations, each with one of the possible values as the regex to be
matched, then you could assign different appearances to the opening of each different pragmatic
function - e.g. colour them differently depending on the function type.

� You have an XML attribute with two possible values, where one is assumed (the default) and
the other applies in only a limited number of cases. By creating a conditional visualisation for
the latter but not the former, you can have it appear in the interface only when it has its less
common, unexpected value and let it remain invisible when it has the more common, default
value.

Be careful with conditional visualisations. It is necessary to consider all possible contingencies, because
it will always cause problems to leave any bit of XML uncovered.

For instance, if you have a single visualisation that applies to s type when its value matches “question”,
that leaves all other values of s type with no visualisation. They will instead be rendered as nothing.
You can specify this explicitly by creating an empty default, that is, something like this:

� Visualise start of s type as [some block of HTML], with condition that the value must match
“question”;

� Visualise start of s type as [leave empty], with no condition.

The second condition will apply to all instances of s type with other values, causing them simply not
to show up in the display.

Without such an explicit visualisation, any XML boundaries that are not matched by any of the
relevant conditions default to being rendered as nothing anyway.

10.4.4 The embedded variable

As well as making the use of a visualisation conditional on the value of the instance of the s-attribute,
it is also possible to actually include the value in the HTML rendering.

This is done using the embedded variable. This is, quite simply, a sequence of four dollar signs ($$$$)
appearing anywhere in the HTML code of an XML visualisation.

Note that the embedded variable (a) only works for start tags, not end tags; (b) cannot be used
for s-attributes that don’t have values! When the s-attributes have, as is usual, been created from
structured XML, the s-attribute “head” of the “family” lacks values, but the “children” representing
the XML attribute-value pairs have values.

So, for instance, if you have <p> elements in your corpus with attributes num and type, then the
s-attribute p will have no values (so the embedded variable won’t work), but the s-attributes p num

and p type will have values that can be inserted into the HTML using the embedded variable.

10.4.5 HTML allowed in XML visualisation code

Only certain HTML elements are allowed in XML visualisation code. When you add a new visualisa-
tion, all the HTML in your code will be compared to the “whitelist”, and any HTML that is not on
the whitelist will be escaped.

So, for instance, <script> is not allowed in visualisation code. If you try to install a visualisation
containing <script>, it will be escaped to <script> and appear literally in the browser as
<script>.

© 2020 Andrew Hardie and contributors 88

CQPweb System Administrator’s Manual 10 CONTROLLING QUERY VISUALISATION

The HTML whitelist is as follows. For convenience, it is divided here into (a) simple codes (just tags
with no attributes) and (b) complex codes which require an attribute.

You can use the following simple HTML formatting codes (just tags with no attributes):

� ... - render text as bold

� <i>...</i> - render text as italic

� <u>...</u> - render text as underline

� <s>...</s> - render text as strikethrough

� _{...} - render text as subscript

� ^{...} - render text as superscript

� <code>...</code> - render text as code (usually means a monospace font)

�
 - add a line break (hint, for the appearance of a paragraph break, use

)

Of course, nothing forces you to close HTML tags that you open in an XML visualisation; however, if
you don’t, you may find that your formatting interacts peculiarly with CQPweb’s own rendering.

The available complex codes are as follows:

� - embed an image; the URL can be relative or absolute

� ... - apply one or more CSS classes to a span of text
(to link a class to one of the other tags, wrap it in a span)

� ... - create a link (http/https only) (all links will open au-
tomatically in a new browser window or tab)

� <bdo dir="ltr/rtl">...</bdo> - mark text as left-to-right / right to left: CQPweb uses these
tags with right-to-left alphabet corpora, and you may need to use them in your visualisation
code to stop odd interactions between your HTML and the direction of the text it appears in

For both simple and complex tags you need to use the lowercase form shown above, i.e.
 not

; full HTML allows either, but CQPweb only whitelists the former. Similarly, you must use double
quotes for attribute values, even though full HTML allows single quotes.

As well as HTML tags from the whitelists above, you can also use HTML entities. You don’t need to
use entities for accented characters or non-basic punctuation, however, although these are two typical
uses for entities, because the UTF-8 encoding is used throughout CQPweb, so you can just use the
characters directly. One useful entity is (no-break space), which functions as a unit of “empty”
text (note that actual whitespace is ignored).

It’s worth pointing out that the following frequently-used HTML codes are not usable in visualisations,
because they would interact badly with the HTML/CSS that CQPweb itself uses.

� <p> and <hN >

� <div>

� <pre>

© 2020 Andrew Hardie and contributors 89

CQPweb System Administrator’s Manual 10 CONTROLLING QUERY VISUALISATION

� <table> and other table-structure tags

You can, however, still make use of these and other features of HTML by means of extra code files,
explained in section 10.4.6.

When your create visualisations for use in downloaded queries, remember that any HTML will normally
not be rendered: users will see the actual code in the plain text file they download. For that reason,
it’s normally better just to use a plain text visualisation here (possibly with the embedded variable).

10.4.6 Extra code files

The combination of HTML, CSS and JavaScript in a dynamic web page allows almost limitless variation
in how information is presented. However, for security reasons, it is not possible to allow all the
richness of HTML to be usable in the XML visualisations that are created via the interface: without
the restriction to a limited subset of HTML, an attacker who gained access to a superuser’s account
would be able to insert arbitrary JavaScript code into the browser of any user who subsequently
accessed that corpus.

However, the simple visualisation code permitted by the whitelisted-HTML may well be too restrictive
for users who want complex rendering of data in their corpus XML. CQPweb has an additional
mechanism to allow users to perform more complex formatting: the insertion of extra code files.

An extra code file is a file containing either CSS or JavaScript code. You can specify one or many
such files for each corpus (with separate lists for concordance view and context view to allow different
renderings in each). These files will be linked in the headers when a concordance/context page is gen-
erated. The overall appearance of the concordance/context will thus be governed by the combination
of CQPweb’s built-in styling and the extra CSS/JavaScript you have added.

An extra CSS file allows to you write arbitrary stylesheet code to change the appearance of text within
a visualisation. For instance, if you have used a element to assign a class to some piece of text,
you can use an extra CSS file to apply any style(s) you want to spans with that class.

An extra JavaScript file is even more powerful. You can manipulate the HTML doument tree in
more-or-less unlimited ways. In addition, CQPweb uses the jQuery library, and your extra code can
use this library too. jQuery uses CSS selectors to pick HTML elements to operate on, so again, the
assignment of classes to particular bits of text in the visualisation code allows you to later write a
JavaScript/jQuery function to pick out those specific parts of the document and modify them as you
wish. An example of this is provided below.

You can, of course, use extra code files to modify aspects of the concordance and context views other
than just the XML visualisations. But it is that combination which offers the most powerful options.

There are three steps to add an extra code file.

� Write the code.

� Insert the file with the code into CQPweb (must be done on the server, cannot be done via the
web interface).

– CSS files should be placed in the css subdirectory of the main directory.

– Javascript files should be placed in the jsc subdirectory of the main directory.

– Note that extra code files must have the canonical file-extensions: .css and .js respectively.

� Finally, activate the code file for the corpus you want to apply it to.

© 2020 Andrew Hardie and contributors 90

CQPweb System Administrator’s Manual 10 CONTROLLING QUERY VISUALISATION

Extra code files are activated using the Manage visualisations display, under the heading Extra
code files for visualisation. Select a file from the dropdown and press “Add this file” to activate it;
use the [x] buttons to deactivate code files from a corpus. Deactivating does not delete the file, and
only affects the particular corpus in question - any other corpora where the same file is activated will
be unchanged.

There are two separate forms for concordance view and context view, allowing you to have very
different layouts in concordance and context views. Here are two examples.

In our first example, let’s imagine that the corpus contains <u> elements for utterances, with a speaker

attribute, giving the s-attribute u speaker. Let’s assume we have created the following visualisation
for u speaker:

� $$$$:

We can exploit this with an extra CSS file to make speaker labels stand out more distinctively in the
display. The CSS file could contain the following:

/* --------------------------- THIS IS THE CSS FILE */

span.swanky-speaker-label

{

color: pink;

font-weight: bold;

font-family: "Comic Sans", sans-serif;

font-size: 16pt;

}

/* --------------------------- END OF THE CSS FILE */

When this file is specified as an extra CSS it will apply this highly tasteful additional styling to all
speaker labels.

If we want to do something more advanced (for example: make all speaker labels clickable, causing an
information box to appear when clicked) this can be done in an extra JavaScript file using either the
native JavaScript method of interacting with the DOM (document object model) or the facilities of
the jQuery library. The following code exemplifies the latter:

/* --------------------------- THIS IS THE JAVASCRIPT FILE */

function show_my_info(speaker)

{

/* The following is a placeholder for the more complex

behaviour you would want in a real situation. */

alert ("The speaker is " + speaker + " !");

}

$(document).ready (function() {

/* this passes the whole content of the span to the show_my_info function

* (including any extra matter added around the value, like a <:> (See above).

* In reality, you would usually want to make it easier for the jQuery code

* to access just the value, to do interesting things with it.

*/

$("span.swanky-speaker-label").click(function () {

show_my_info($(this).html() ;

© 2020 Andrew Hardie and contributors 91

CQPweb System Administrator’s Manual 10 CONTROLLING QUERY VISUALISATION

return true;

});

});

/* --------------------------- END OF THE JAVASCRIPT FILE */

One thing that can be done using extra JavaScript files is to create renderings that involve the content
of more than one s-attribute. For instance, imagine our original input-format utterance tags look like
this:

� <u speaker="ID Code" type="QUESTION">

If we want to make use of both the code and type values to build what appears in the concordance at
an utterance boundary, the easiest way is to use a basic visualisation, and then join the two together
using JavaScript.

First, we would add these visualisations:

� For u_speaker : $$$$

� For u_type : $$$$</span

The key thing to note here is that the visualisations of attributes within the family of a single XML
element will always appear directly together. So the above will always generate something like this:

� ID Code<span

class="type">QUESTION

... which is easily manipulable via the HTML DOM.

/* --------------------------- THIS IS THE JAVASCRIPT FILE */

$(document).ready (function() {

/* on document ready, run this function on each of the outer spans */

$("span.all-info").each(function () {

var outer = $(this);

/* extract the string contents of the inner spans */

var speaker = outer.children().first().html();

var type = outer.children().last().html();

/* having done so, we can now simply set the inner-html of

* the outer span to the string we want */

outer.html(

"[[This is a "

+ type

+ " spoken by "

+ speaker

+ "]]"

/* in reality you’d want more elaborate HTML! */

);

});

});

/* --------------------------- END OF THE JAVASCRIPT FILE */

Finally, just to note the obvious: extra code files can’t be used with downloaded queries.

© 2020 Andrew Hardie and contributors 92

CQPweb System Administrator’s Manual 10 CONTROLLING QUERY VISUALISATION

10.4.7 Fallback visualisation methods

Many corpora are set up with no XML visualisations (indeed, XML visualisations were not imple-
mented until CQPweb had already been around for many years). In this case, the text from the
corpus in the extended context display will all appear as a long, unbroken block.

To make extended context look a little nicer without the need to create a visualisation, CQPweb
possesses a fallback method. When this is switched on, a double-line-break is rendered in context
view after every token made up only of non-medial punctuation. This roughly simulates having each
sentence in a separate paragraph. This will not work with every language or every type of corpus
data. But in most cases it results in a reasonably-OK way to break up the wall of text.

If you have added a visualisation to insert breaks in context view, you might well want to turn off this
fallback method. Of course, you might also just want to turn it off anyway! A control can be found
to do this on the Manage visualisations view, under the heading Visualisation fallback procedures.

When a corpus is indexed, it has no visualisations initially. So the fallback is always switched on by
default for newly-added corpora.

10.5 Field data presentation mode〈〈
Field data presentation mode

〉〉
TODO

10.6 Field data mode as a workaround for parallel corpora〈〈
Field data mode as a workaround for parallel corpora

〉〉
TODO

© 2020 Andrew Hardie and contributors 93

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

11 User accounts and privileges

11.1 Basic concepts

Access to CQPweb is based on user accounts. The user account has two functions. First, it determines
what resources (corpora and analysis options) a given user has access to. Second, it provides a basis
for (limited) personalised functions. For instance, every user account has its own query history, its
own set of saved queries, its own set of subcorpora, its own concordance display preferences, and so
on.

If you are running an online CQPweb system, then normally you will want to use CQPweb’s functions
for creating user accounts via a self-registration process. That is, someone who wants to use your
CQPweb server should first visit the homepage, where they will find a link to a form for account
creation. This is very similar to the process for signing up for an account on pretty much any website,
so should not be challenging. There is also a tool in the Admin Control Panel for you to either create
accounts for users yourself, or to send an invitation to a specified email address.

User accounts must be linked to email addresses. This is because knowing the user’s email address is
the only way to make it possible for them to reset a forgotten password. Again, this is pretty much
standard procedure on the web.

Each user account belongs to one or more user groups. A user group is exactly what it sounds like:
an arbitrary set of user accounts. There are two builtin groups: superusers and everybody - both
of which do exactly what it sounds like they do!

User accounts can be added to groups other than everybody in two ways: either automatically at
the time of account creation (based on pattern matching against their email address), or manually by
you using the Admin Control Panel.

The final core concept is the privilege. A privilege simply defines some permission that can be granted
to a user. This might be a level of access to some corpus or set of corpora, or permission to initiate a
database operation of a certain size. Privileges may then be assigned to users individually, or to user
groups. A link between a privilege and either a group or a user is called a grant. Each user then has
all the privileges granted to them or to any of the groups to which they belong. This set of privileges
determines what CQPweb will and will not let that user account do.

It should be noted that any user account in the group superusers automatically has every possible
corpus-access privilege; other privileges can be granted or not granted to that group, as usual.

The system is very flexible, which makes it rather complex. This chapter explains different aspects of
the system, and how you can control it.

11.2 User accounts

By default, users can create their own accounts using the self-registration system. However, if you don’t
want to allow access to anyone you have not vetted individually, it is possible to switch this system
off: see 2.3.7. Self registration runs as follows: first, the user specifies the username and password
they want, and supplies an email address (and, optionally, other information about themself, including
their real name, location in the world, and organisational affiliation). They may also have to answer
a CAPTCHA challenge, if you have switched that on. The system then sends an email to the address
specified with a verification code. The user must click on the verification link: their account is then
activated, allowing them to sign in with their username and password. This verification system (a)
prevents the creation of accounts that the owner cannot retrieve in case of a forgotten username or
password, since it guarantees that a correct email address has been supplied; (b) stops anyone creating
an account for someone else.

© 2020 Andrew Hardie and contributors 94

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

� A known “gotcha” here: CQPweb’s automated emails are known to be blocked by the spam
filters used by Yahoo’s free email service. There does not appear to be anyway around this. So
if you have users on Yahoo mail, you will probably need either to validate their email addresses
manually, or to instruct them to use a different free email service (Google Mail seems generally
to work fine).

Whether or not self-registration is enabled, there are also tools available in the Control Panel for you
to create accounts for people, as well as view (or delete) existing accounts Go to CP >Users and
Privileges >Manage users to access these tools.

At the top of this screen is a summary of the existing accounts on the system.
〈〈

Note that the tool for TODO

looking at a list of unverified accounts, linked at the bottom of the summary table, has not been written
yet.

〉〉
Next is the user-account search form. This is how you view the status of an individual account. There
are two search tools. The first is the quick username search. Simply start typing the username of the
account you wish to view: a list of suggestions will be provided as you type, and you can simply click
on one of the links as soon as you have narrowed the list down enough. (Pressing TAB from the quick
search box will move you through the suggestions list; press ENTER to view the selected account.)

The second search tool, the Full search, checks for the term you enter in three different fields: username,
real name, and email address. The results include accounts where your search term appears in the
middle of one or more of those fields. This is especially useful if you are looking for an account whose
username you are not certain of: searching for a fragment of a person’s name here is very likely to find
their account. This tool has a more conventional search interface than the quick search - you must
press the Search button to go to a table of results, each of which gives you a link to view the account
details (see section 11.3).

Underneath the search tools are the account creation tools. The main account creation form is an ab-
breviated version of the user’s self-registration form. The difference is that only a username, password
and email address are needed. The optional fields (real name, affiliation, location) are not set here;
the assumption is that if the administrator creates an account and tells the user what their credentials
are, they will log in later and add these details themself.

This form generally has much less security than the corresponding self-registration form, based on the
assumption that the administrator(s) know what they are doing:

� There is no CAPTCHA

� The password is not masked

� The password does not need to be typed twice

Similarly, when you create an account through this interface, validation by email is optional: you can
cause the account to be automatically validated if you are certain that the email you’ve entered is
valid; and you also have the option to leave it unvalidated without sending an email.〈〈

It is intended to add an “invitation” tool here, to allow people to be sent a “please sign up” link TODO

to the account creation form (prepopulated to the extent possible). However this has not yet been
implemented

〉〉
One final note on account creation relates to security.

If you’re using a normal web server, CQPweb passwords are transmitted in plain text via HTTP.
This is very insecure. Theoretically there is little danger in a user’s CQPweb password being stolen.
User data stored on CQPweb is seldom highly-sensitive, though of course there may be exceptions.

© 2020 Andrew Hardie and contributors 95

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

However, if self-registration is enabled, there is a high level of danger - since users select their own
passwords, and it is well known that most users tend to reuse passwords on multiple sites.
This means that a user’s CQPweb credentials being stolen potentially exposes their accounts on other
systems - in the worst case, highly consequential systems like social media or online banking.

To protect users from the consequences of password reuse, you have two options:

� Disable self-registration. Generate all passwords for users yourself, to prevent reuse, using highly
non-memorable passwords to deter the user from going on to reuse the password you have chosen.

� Use HTTPS instead of HTTP. This is the recommended course of action.

One option that is known not to work is instructing users not to re-use passwords. Such instructions
are routinely ignored - if the user even notices them in the first place.

CQPweb stores passwords internally in an encrypted form, so that they are protected even if your
server is hacked. However, this does nothing to protect users if their credentials are transmitted in
plain text via HTTP.

11.3 Viewing user account details

When you view a user’s account details, you will see most of the basic information recorded about the
user in CQPweb’s internal database: their real name, email, and affiliation (as supplied when they
signed up), plus also the time of account creation and the time the user last accessed CQPweb.

� If the date of account creation is either “0000-00-00” or a date in 1970, it means that the account
was created before CQPweb started tracking the ages of user accounts (in version 3.1.0).

� If the last-visit date is either “0000-00-00” or a date in 1970, it means that the user has never
logged in.

manually validating an ccount

deleting an account

resetting the password

corpus stats

setting the database size〈〈
account expiry

〉〉
TODO〈〈

password expiry
〉〉

TODO〈〈
bulk log out, and the log in list in the user profile. Here or in the prev section??

〉〉
TODO

11.4 User groups

A group is exactly what it sounds like: a group of user accounts. You can organise user accounts into
groups manually based on whatever principle you see fit; alternatively, you can organise users into
groups automatically using patterns in their email addresses.

The point of user groups is that it is usually much more convenient to grant privileges, such as the
privilege to access a certain corpus, to a group of users all at once, than to grant such a privilege to
every user, one by one - especially if your server is open to the internet and anyone can create an
account on it.

As noted in section 11.1, there are two builtin “special” groups, whose membership is not controlled
in the usual way. They are:

© 2020 Andrew Hardie and contributors 96

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

� superusers, which contains all and only those users declared as system administrators in the
configuration file (see 2.2).

� everybody, to which all users belong automatically, and from which no one can be removed.

Groups are created, managed and deleted via the Admin Control Panel: go to CP >Users and
privileges >Manage groups.

� To add a new group, use the form at the bottom of the screen; all you need to specify to create
a group is its name, which should be letters/digits/underscore only.

� The list of existing groups are tabulated at the top of the screen, in alphabetical order of group
handle.

� This table allows you to enter a longer description for the group, which would normally be some
aide-memoire to the group’s nature and purpose.

� It also allows you to enter an Auto-add regex, which is explained below.

� After entering or modifying the description or regex, press Update to save your changes.

� Also in this table you will find [x] buttons to delete groups.

To add or remove users individually from a group, go to CP >Users and privileges >Manage
group memberships. Next to each group on this screen is a pair of controls - one for adding users
who are not already members, and one for removing users who are currently members.

A user can be assigned to as many groups as you like.

Users can also be added automatically to groups at the point of account creation. This works as
follows. It is possible to associate a regular expression (regex) with each group (this is the Auto-add
regex discussed above). When a new user account is created, CQPweb checks each group regex against
the new user’s email address. If there is a match, then the user is added to the group in question.

The typical usage case for this function is the situation where you have created a group that is
associated with a particular institution. In that case, you can set up the group regex to detect email
addresses “@” that institute’s domain.

The regex flavour used is PCRE (Perl Compatible Regular Expressions). You can use any PCRE
feature in an auto-add regex. The auto-add regex can be very long - up to 64 KB. Needless to say, it
is not recommended to use such a long regex! The form limits you to 1024 characters; longer regexes
can be inserted by direct manipulation of the MySQL database if necessary.

Changes to the regex are not retroactive. So if a user A signs up on Monday with an email address
ending @anytown.edu, and on Tuesday you modify the regex for some group G so that it matches
addresses ending in @anytown.edu, the existing user A will not be added automatically to group G.

(Similarly, users are never removed from groups based on a regex changing. So if user A is a member
of group G, and group G’s regex changes so that it no longer matches user A’s email, user A will not
be removed from group G in consequence.)

You can, however, force a re-application of the regex to all existing non-members via the Bulk Add
tool. This can be found at the bottom of the Manage group memberships screen.

The first of the two Bulk Add tools is Apply group’s stored pattern-match to existing users. To use
this, select a group and press the “...run group regex against existing users” button. All existing user
accoutns that are not already in the group will be checked, and added to the group if their email

© 2020 Andrew Hardie and contributors 97

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

address matches. But note this is not exclusionary: if there are users already in the group whose
email addresses do not, or no longer, match the regex, they will not be removed from the group by
application of this tool.

The second Bulk Add tool works in exactly the same way, except that instead of using the stored
auto-add regex of the group to which you wish to add members, it uses an ad hoc regex that you must
supply via the form. This adds a further level of flexibility to the group system.

11.5 Privileges

Privileges represent things a user can do in CQPweb. There are multiple types of privilege, each
controlling access to a different type of “thing” that can be done. The most important type is the
corpus-access privilege, which determines which of the available corpora a user is allowed to use, and
what they are allowed to do with that corpus.

This section first explains the different types of privilege, and then goes on to explain how you can
create, monitor, and edit privileges in the CQPweb system.

11.5.1 Corpus access privileges

There are three levels of corpus access privilege. In order of ascending level of access, they are normal,
restricted, and full. The latter two levels are defined relative to normal.

Normal access is the level of access that you would give to users who have all the necessary licences/IP
rights to both use and reproduce the data. For example, if the corpus is one for which a licence must
be paid, you would give normal access to any users known to have paid for a licence or to be affiliated
to an organisation which has a licence. Alternatively, if the corpus is one that is openly accessible to
all, you could grant normal access to all users on the system, via the everybody group.

When a user has normal-level access, they can do more or less everything. They can perform (and
download) concordances without restriction, and they can use the extended-context function. These
two functions open the possibility of users being able to access the complete underlying text of (one or
more texts from) the corpus - by downloading, or copy-pasting, overlapping extended context chunks.
By default, extended context can be expanded out to around 2,000 tokens, so it is in theory possible
to extract the whole text of a corpus from the concordance of any evenly-distributed item with a
frequency greater than about 0.5 per thousand tokens. This is why normal access should not normally
be given to users who do not have the necessary IP rights to the corpus.

Restricted access implements certain limitations on what users can do that are intended to make it
much harder, if not impossible, for them to be able to extract the complete underlying text from the
CQPweb interface. The idea is that restricted access to a corpus can potentially be granted to users who
don’t have a licence - even if the corpus contains copyrighted material - because the restrictions stop
them getting at any stretch of underlying text longer than concordance-length snippets, reproduction
of which is more likely to fall under the “fair use” or “fair dealing” provision of copyright law.

� Necessary disclaimer : no one who works on CQPweb is a lawyer and nothing in this manual
constitutes legal advice. The restricted access privilege is provided in the hope that you may
find it useful as a partial tool for making sure you comply with whatever the copyright law is in
your jurisdiction; but without any warranty whatsoever that it is either necessary or sufficient
for that purpose. You use it at your own risk.

The restrictions implemented for that level of access are as follows:

© 2020 Andrew Hardie and contributors 98

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

� Users can’t view extended context if they only have restricted access.

� Users are blocked from using the Download tabulation function.

� If a query has too many hits, it will automatically be thinned down to a random subset. (Too
many = more than half the square root of the size of the corpus or subcorpus in tokens.)

To explain the last one: as noted above, if you do a concordance for something really common, and
then download it, you could in theory reconstruct the whole corpus from the concordance lines - even
without access to the extended context view. The “half the square root” limit tries to counteract this,
while not making concordances in small corpora totally useless.

So, for instance, half the square root gets you 5,000 examples in a 100MW corpus, but 1,000 examples
in a 1MW corpus. The limit is always rounded upwards to a whole number of thousands.〈〈

create table of some common sizes
〉〉

TODO

The idea is that the random subset of examples will be spread out in the corpus so there will be gaps
between them no matter how common the thing searched for is – so the underlying text can’t be
reconstructed.

Full access lets users access extra functions that involve total access to the data in one way or another.
Currently, the only such function is the Export corpus tool, which allows the raw text of the corpus
to be exported in plain-text format for analysis using other software.

A corpus access privilege is defined in terms of its level (restricted, normal or full, as per above) and
its scope - where its scope is the corpus or set of corpora that it grants access to.

So, for instance, you might define a privilege granting restricted access to corpora A, B and C, and a
second privilege allowing normal access just to corpus A. As explained further in section 11.6, CQPweb
always uses the highest applicable privilege. Users granted both these privileges would therefore have
normal access to A and restricted access to B and C.

Adding a new corpus to an existing scope is an easy way to apply the access pattern you have defined
for one corpus to another. Continuing the example, if you a create a new corpus D which is governed
by the same licensing/IP conditions as corpus A, you could simply add corpus D to the privilege which
allows normal access to A. All users granted that privilege would then have access to corpus D without
you needing to separately configure any grants of new privileges for corpus D.

11.5.2 Frequency list privileges〈〈
Explain these

〉〉
TODO〈〈

Explain necessity of giving “everyone” at least one privilege of this sort
〉〉

TODO〈〈
explain that the “scope” here is a number:

〉〉
TODO

11.5.3 Extra runtime privileges〈〈
Explain these

〉〉
TODO〈〈

explain that the “scope” here is a number:
〉〉

TODO

11.5.4 Database privileges〈〈
Implement these; explain

〉〉
TODO

© 2020 Andrew Hardie and contributors 99

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

11.5.5 File upload privileges〈〈
Implement these; explain

〉〉
TODO

11.5.6 Upload-area filestore privileges〈〈
Implement these; explain

〉〉
TODO

11.5.7 The CQP binary file privilege

Users who have this privilege are allowed to do two things that users without the privilege are not:

� Download binary-form CQP query files from saved queries

� Create a saved query by uploading a binary-form CQP query file

These two mirror-image functions are designed for advanced users who make extensive use of very
large saved queries. Such users may exhaust their allowance of saved-query space. An easy way for
them to clear out their disk space allowance is simply to export the binary files of the saved queries
for external storage, and then reinsert those binary files if they want to use the queries in CQPweb
later. This avoids extensive use of corpus-position dumps.

These functions should normally be restricted to advanced users simply because most users will not
understand what CQP binary saved-query files are or how they work!

There is only one privilege of this type, and it is one of the default generated privileges. However, it
is not initially granted to anyone, so the functions in question will only be available to superusers.

11.5.8 Corpus installation privileges

These privileges are required for users to be able to install their own corpus data on the server.

To allow users to install their own corpora, the first step is to enable the user-corpus system, by setting
the $user_corpora_enabled configuration option to true (see 2.3.8).

This will only make the system visible to users. They will not be able to actually install corpora until
their account has a privilege allowing them to.

Multiple privileges affect user-corpus installation:

� First, they must have a file-upload privilege (see above, 11.5.5).

� Second, they must have a disk-space privilege giving them sufficient space in their upload area
to store the input files for corpus installation (see above, 11.5.6).

� Third, they must have the privilege to use at least one of the registered CorpusInstaller plugins.

� Fourth, they must have a disk-space privilege for user corpora.

The third privilege above governs how much data can be installed into a single corpus with a given
installer plugin. The fourth governs the total amount of space taken up by all of the user’s corpora
(this gives the system administrator defence against some user or users taking up all the available disk
space).

© 2020 Andrew Hardie and contributors 100

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

11.5.9 Creating and editing privileges〈〈
Make sure that the right links in the admin-ui chapter point here

〉〉
TODO〈〈

explain the interface
〉〉

TODO〈〈
Explain how privileges are presented: unique ID number, then a short prose explanation

〉〉
TODO〈〈

Explain the edit interface
〉〉

TODO

11.6 Grants: creating and managing grants of privileges

A grant is a link between some user, or group, and a privilege. The system works out what a user is
and is not allowed to do based on the privileges granted to them.

A user has both any privileges that have been granted directly to them; and all the privileges that
have been granted to any one or more of the groups of which they are a member.

Higher privileges override lower privileges. For instance, let us imagine there is a user A who is a
member of group B, and we want to know what level of access this user has to a corpus C.

� If group B is granted restricted access to C, but user A is individually granted normal access to
C, then the effect is that A has normal access to C: the grant to the user overrules the grant to
the group.

� If group B is granted normal access to C, but user A is individually granted restricted access
to C, then the effect is the same - A likewise has normal access to C: the grant to the group
overrules the grant to the user.

The same is true with other types of privilege: when more than one applies, the one that has effect is
the most expansive. This means it is always safe, and usually a good idea, to grant a lowest-common-
denominator set of privileges to the “everybody” user group; users and groups with higher privileges
will always benefit from those higher privileges, even though the users in question are (by definition)
also members of “everybody”.

When a user is removed from a group, they lose the privileges associated with that group, unless, of
course, they are linked to that privilege in another way - individually, or by virtue of membership
in another group that is granted that privilege. To put it another way, the transfer of grants from a
group to its members is dynamic and ongoing, not static and persistent.

Finally, if a privilege is edited, then all users and groups who were granted the privilege pre-edit are
still granted that privilege post-edit. (This makes it easy to give a new corpus the same access pattern
as some existing corpus, by putting it within the scope of the privileges that govern the existing corpus.
It is then not necessary to add any more grants on the system.)

There are two menu options in the Admin Control Panel which allow you to create, monitor, and delete
grants: CP >Users and privileges >Manage user grants and CP >Users and privileges
>Manage group grants.

These menu options lead to very similar screens. At the top is a form for making new grants. To grant
a privilege to a user or group, select the user/group from the first dropdown; select the privilege from
the second dropdown; and press the Grant privilege... button.〈〈

in future it will be possible to set a grant to expire on a specified date. But this is not yet implemented
〉〉

TODO〈〈
by the present design, expired grants will just be deleted - they won’t be preserved inactive. Or should TODO

they be?
〉〉

© 2020 Andrew Hardie and contributors 101

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

Lower down you will find a list of existing grants. Press the [x] button next to any grant to delete it.

The Manage group grants screen has one extra function, which is the self-explanatory Clone grants
tool.

Cloning grants from one group to another is useful if you have just created a new group that is going
to have broadly similar privileges to an existing group: cloning the existing group’s grants to the new
group, and then editing those grants as necessary, can be quicker than granting each of the privileges
to the new group one by one through the interface.

11.7 Running an open server〈〈
more

〉〉
TODO

Even if all your corpora are completely open-access, it is often still a good idea to get users to sign up
for individual accounts, so that they have access to their own private saved/categorised queries, their
own query history, and so on.〈〈

more
〉〉

TODO〈〈
note the gotcha of blog spam in the macros form

〉〉
TODO

11.8 Access to frequency lists〈〈
section not written

〉〉
TODO〈〈

following is text from an email to the CWB list explaining SOME of the issue
〉〉

TODO

No, it’s not the case that every corpus shows up - or at least, not for everyone; what you see depends on which user you are. *You* are seeing all

corpora incl. invisible because, I guess, you are superuser.

Here’s the new system (as of 3.2.40 I think) in detail.

Currently, in both 3.2 and 3.3, the list of corpora/subcorpora offered as reference for keywords includes the following:

* - Remainder (current corpus minus subcorpus selected on list 1)

* - Subcorpora (local, owned) (lus)

* - Granted subcorpora (local) (lgs)

* - Public subcorpora (local, non-owned) (lps)

* - Entire corpus (***)

* - System corpora (any access level) (fsc)

* - User’s own corpora. (fuc)

* - Granted corpora. (fgc)

* - User’s nonlocal subcorpora (fus)

* - Public subcorpora (nonlocal, nonowned) (fps)

* - Granted subcorpora (nonlocal, nonowned) (fgs)

where "local" = part of the current corpus ; "owned" = installed by the user in the "user corpora" system (overall still buggy! but this bit works I

think) ; "granted" = installed by another user who has given the current user access; summarised by the three-letter code. (Above is from a comment

in query-forms.php circa line 840ff in 3.3 and circa 940 ff. in 3.2) [*]

That is, as well as public subcorpora, users are able to use the freq list of any system or user corpus they have a suitable privilege/grant for.

There’s no such thing as a public corpus FL any more (and both the database field and UI to set it are gone), only corpora that the user has

© 2020 Andrew Hardie and contributors 102

CQPweb System Administrator’s Manual 11 USER ACCOUNTS AND PRIVILEGES

permission for.

This is part of a long-planned move away from the ancient all-or-nothing "public freqlist" mechanism (which was always a bit of a bodge) to relying

on the "corpus access privilege" system, which has at least some semblance of flexibility. "Public FL" still exists for subcorpora, though.

In future, the public FL feature will be removed completely once I work out how to handle subcorpora with the "permissions" system.

Other plans: a new privilege level, perhaps, IE "freqlist only access" or similar, which would grant a level of access similar to the previous

"public" function. Also in future, the list of corpora available for KW will be filtered by language *iff* the language of the local corpus is not

"undetermined".

Till then, subcorpus FL publicness is controlled just as it always was: through "cached frequency lists".

© 2020 Andrew Hardie and contributors 103

CQPweb System Administrator’s Manual 12 USING PLUGINS

12 Using plugins

12.1 What is a plugin?

� A plugin is a small program written to operate within the framework of a larger system.

� Many applications offer a plugin framework, so that advanced users can add capabilities to the
system which it does not possess out-of-the-box.

� CQPweb is such an application.

� A CQPweb plugin is a chunk of code added to the system, which is then accessed in predefined
ways by CQPweb to provide extra capabilities for users.

� Some plugins are supplied with CQPweb. You can also write your own.

� This chapter explains some general things about plugins, and some specific things about the
currently implemented types of plugin.

� The different types of plugin do not have much in common, they just represent a set of things
that we thought users of CQPweb might want to have an easy way to customise!

� A plugin is a single PHP file, which contains a PHP class for the plugin.

� The class, and the PHP file, must have the same name as the plugin. For instance, My-
SuperPlugin should be in a file MySuperPlugin.php which must contain a PHP class called
MySuperPlugin.

� To make use of a plugin, you must first put the code file into lib/plugins within the CQPweb
folder.

� Only plugins at that location are recognised by the system (see 12.3.

� Some made-for-you plugins are already present under lib/plugins/builtin.

� To use your plugin, you must register it (see 12.4 to make CQPweb aware of it.

� For some plugins, you must also configure privileges (see 12.5) in order to be able to grant some
or all of your users permission to use the plugin.

� Other plugins need to be activated for use with different corpora.

� All plugins can be given extra configuration data when they are activated by CQPweb.

� This configuration is specified when you register the plugin. A plugin can be written to make
extensive use of extra configuration, or none at all - as its creator prefers.

� Extra configuration can be used to provide system-specific information that the plugin needs, or
even to make the same plugin code behave in different ways depending on the extra configuration
it was registered with; see 12.4.

� Different types of plugin have been added at different points in CQPweb’s history; for a list, see
12.2.

© 2020 Andrew Hardie and contributors 104

CQPweb System Administrator’s Manual 12 USING PLUGINS

12.2 Types of plugin

12.2.1 Annotators

An Annotator plugin is one that tags a file. Normally, this will be a case of interfacing with an external
program such as a POS tagger or lemmatiser; but the plugin class could also be written to do the job
itself.

Annotators should produce output in CWB vertical format - that is, p-attributes as columns, with
XML tags for s-attributes on separate lines. That is because, when the user-corpus system is enabled,
users can select Corpus Installers (see 12.2.5) to run over their uploaded files, and Corpus Installers
are able to use Annotators. So the typical sequence would be:

� User uploads a text file or files;

� User selects a Corpus Installer and specifies their uploaded file(s) as input;

� Corpus Installer calls an Annotator to run over the specified files;

� Corpus Installer passes the output files (in vertical format), plus information on what attributes
are used, back to CQPweb to set up the corpus.

However, ideally Annotator plugins should be written to work independently of this process; the
Annotator should only “care” about the tagging of the text files, leaving the other details to the
Corpus Installer plugin.

Annotators are a semi-exception to the general rule that plugins must be registered (see 12.4), because
a Corpus Installer can be designed to use an Annotator regardless of whether it is registered with
CQPweb or not. The StandardToolInstaller plugin (see 12.7.7) works this way; it uses either the
TreeTagger or UcrelTagger Annotator plugin to tag input data, and can do so even if they are not
registered - as long as they are in the lib/plugins directory.

To write an Annotator plugin, you need to write methods for (a) tagging files, and (b) describing the
format of the resulting tagged file; see 12.6.3.2.

12.2.2 Format Checkers

Format Checker plugins are currently not enabled.

Format Checker plugins are used to check that data files are in a valid format. They will be accessible
(a) to Annotator/Corpus Installer plugins, so they can check their input data; (b) to users and the
system administrator via the upload area screens.

12.2.3 Script Switchers

Script Switcher plugins are currently not enabled.

Script Switcher plugins are used to transform the underlying data of the corpus in some way for
display. The main purpose of this kind of plugin is for the rendering of non-Latin alphabet data in
Latin. Script Switchers for widely used alphabets will be included.

12.2.4 Corpus Analysers

Corpus Analyser plugins are currently not enabled.

Corpus Analyser plugins allow the creation of custom tools for the Analyse Corpus interface.

© 2020 Andrew Hardie and contributors 105

CQPweb System Administrator’s Manual 12 USING PLUGINS

12.2.5 Corpus Installers

Corpus Installer plugins act as the controllers for installing user corpora (for details on the user corpus
system, see chapter 13).

When a system corpus is installed, all information about its p- and s-attributes, the input files, and
so on are provided by the admin user. For user corpora it is different: to make things more usable
and friendly, they only need to select a Corpus Installer to use. The plugin then (a) manages any
necessary tagging, normally by handing the work off to an Annotator plugin; (b) provides to CQPweb
the information necessary to install the corpus.

Users’ ability to install their own corpora is determined by which Corpus Installers they have permis-
sion to use.

12.2.6 Postprocessors

Postprocessor plugins are currently not enabled.

Postprocessor plugins implement Custom Postprocesses - methods by which a query can be postpro-
cessed.

A Postprocess is any procedure which changes a query result after the query is initially run. The
native postprocesses in CQPweb are things like the Randomise, Sort, and Thin functions. Producing
a reduced set of hits by clicking on a specific item in the Distribution, Frequency Breakdown or
Collocation Displays, also counts as a postprocess, as does splitting up a Categorised Query.

The header bar of the concordance display includes a record of all the postprocesses that have run on
a query since it was originally produced by an initial from-scratch search.

When you install and activate a Postprocessor, it will appear on the dropdown menu in the Concor-
dance display just like the built-in options. It can then be applied to any query. It is up to you to
write the internals of the Custom Postprocess so that what it does makes sense!

12.2.7 Query Analyser

Query Analyser plugins are currently not enabled.

Query Analyser plugins allow custom tools to be added (alongside distribution, collocation, etc.) that
perform and present some kind of analysis of the results of a query. (Contrast Custom Postprocesses,
which alter the data of an existing query.)

12.2.8 Query Downloader

Query Downloader plugins define default (one-click) concordance download modes.

The Download Concordance display (accessed from the Concordance screen of any query) gives the
user numerous options for the format of their download, including Size of context and Format of output
- KWIC or line.

Alternatively, predefined download modes can be accessed via one-click buttons which appear at the
top of the display. In older versions of CQPweb, the system provided two one-click download modes:

� Download with typical settings for FileMaker Pro

� Download with typical settings for copy-paste into Word, Excel etc.

© 2020 Andrew Hardie and contributors 106

CQPweb System Administrator’s Manual 12 USING PLUGINS

As of CQPweb version 3.3.0, the one-click download modes are instead generated by Query Downloader
plugins. One button will appear per registered and activated Query Downloader. Builtin plugins are
provided which replicate the behaviour of the older system one-click modes, but using them is now
optional.

Query Downloaders can work either by providing a bundle of settings to the normal Download mecha-
nism, or by implementing an internal mechanism to process raw concordance lines generated by CQP
into the format that will be downloaded.

12.2.9 CEQL Extender

CEQL Extender plugins are currently not enabled.

CEQL Extender plugins allow the definition of custom CEQL-based query grammars that can be made
available as extra query modes alongside unextended CEQL (Simple Query mode) and CQP syntax.

12.3 Installing plugins

Plugin files are installed by placing the PHP file in the lib/plugins directory. By default there are
no files at all in this directory - so, by default, CQPweb doesn’t have access to any plugins.

CQPweb possesses a number of builtin plugins (see 12.7). Some of these implement functions which,
we anticipate, will be broadly useful on lots of installations. Others are simply included as examples of
how to create and work with a plugin of that type. The builtin plugins can be found inside a directory
tree under lib/plugins.

The directory lib/plugins/builtin has one subdirectory for each plugin type. At present, there do
not exist examples of every type, although in future there will be.

The builtin plugins are invisible to CQPweb, as CQPweb only looks for plugins in lib/plugins - not
in any subdirectories. To use a builtin plugin, you must first place it into that directory. While you
can do this by actually moving the file, the intended usage is to create links in lib/plugins to the
builtins’ true location.

On Unix-like systems, this would typically be done as follows:

� cd /path/to/cqpweb/lib/plugins

� ln -s builtin/Annotator/BasicTokeniser.php

This creates a link in lib/plugins to the BasicTokeniser plugin’s code file. BasicTokeniser will now
be visible to CQPweb.

A parallel directory tree to lib/plugins/builtin, lib/plugins/local, also with one subdirectory
per plugin type, is provided for convenience for you to store your own plugin files - it will always be
empty. Of course, you don’t have to use it! You can put your own plugin files anywhere and still put
links to them in lib/plugins (but the actual location of the file needs to be accessible to the web
daemon).

Once you have added your plugin file to the plugin directory, CQPweb can find it. But in order to
make it active in the system, you need to register it.

© 2020 Andrew Hardie and contributors 107

CQPweb System Administrator’s Manual 12 USING PLUGINS

12.4 Registering plugins

Once a plugin is installed, you must register it, so that CQPweb is aware of it, and can activate it
where necessary.

The plugin registry contains a list of all the plugins in use. Each registered plugin is linked to a
particular set of configuration data. This means that you can register the same plugin file multiple
times, with different configuration data - and the system will perceive it as a number of different
plugins.

This is useful for plugins like the builtin StandardToolInstaller plugin (see 12.7.7), which can be used to
interface CQPweb to widely used annotation systems, including at present the UCREL CLAWS/USAS
taggers for English and Helmut Schmid’s multilingual TreeTagger, although more may be added in
future. StandardToolInstaller needs to be configured (1) regarding which tagger to use, (2) if using
TreeTagger, regarding which language to tag. It’s therefore possible - in fact, recommended - to register
the StandardToolInstaller multiple times, with different language settings. CQPweb will then contain
multiple different instances of the StandardToolInstaller, each of which can be managed separately.

The plugin registry is managed through the Admin Control Panel. Go to CP >Plugins >Manage
Plugins. At the top of this screen is a form you can use to register a new plugin. You must specify
three things:

� What PHP file contains the plugin class.

� A short description of the plugin (mostly for mnemonic purposes; users won’t see it)

� Configuration data for the plugin, consisting of a set of zero or more key-value pairs.

The configuration data, if any, is passed to the constructor method of the plugin class. The available
configuration settings are specific to each plugin, so refer to the documentation on the plugin in
question to know what is possible.

Below the Register a new plugin form is a table with details of all currently registered plugins. You
can delete registry entries here; deleting a registry entry does not delete the plugin’s PHP file.

Some types of plugin create tools or options inside the interface to a particular corpus, for instance,
Postprocessor and Query Downloader plugins. These must be activated for each corpus where you
wish to make them available. The interface for plugin/corpus activation is accessible via a link from
the table of registered plugins. This interface allows you to control what level of access to the corpus
a user must have for the plugin to be available to them by reference to the corpus access privileges.
Thus, these kinds of plugins do not need to be accompanied by plugin-use privileges.

12.5 Permissions for plugins

Once you have created, installed and registered your plugins, you need to create privileges to control
the use of those plugins. Plugin privileges grant access to particular entries in the plugin registry. If a
given plugin is registered twice with different options, the two versions may be referenced separately
by privileges. This gives you a fine degree of control over what each user or group is allowed to do
with a particular plugin.

If a user has not been granted a privilege permitting them to use a particular plugin, it will appear to
that user as if the plugin does not even exist.

Because plugins affect different parts of the system, the kinds of privileges required vary somewhat.

© 2020 Andrew Hardie and contributors 108

CQPweb System Administrator’s Manual 12 USING PLUGINS

� Annotator plugins are currently only used in corpus installation. For that reason, access to
them is mediated by Corpus Installer plugins. The Annotator itself need not be registered.
Corpus Installers can be told what Annotator to use as part of their extra configuration, and
likewise can pass through extra configuration items to their Annotator where necessary.

� Format Checker plugins are currently not enabled.
〈〈

say something about FormatChecker per- TODO

missions
〉〉

� Script Switcher plugins are currently not enabled. Script Switcher plugins need to be acti-
vated for given corpora; once activated, access is controlled by the normal corpus access privileges.

� Corpus Analyser plugins are currently not enabled. Corpus Analyser plugins need to be
activated for given corpora; once activated, access is controlled by the normal corpus access
privileges.

� To use Corpus Installer plugins, a user must have at least one of each of four different kinds
of privilege. This is discussed in the chapter on privileges (11.5.8).

� Postprocessor plugins are currently not enabled. Postprocessor plugins need to be activated
for given corpora; once activated, access is controlled by the normal corpus access privileges.

� Query Analyser plugins are currently not enabled. Query Analyser plugins need to be
activated for given corpora; once activated, access is controlled by the normal corpus access
privileges.

� Query Downloader plugins need to be activated for given corpora; once activated, access is
controlled by the normal corpus access privileges.

� CEQL Extender plugins are currently not enabled. CEQL Extender plugins need to be
activated for given corpora; once activated, access is controlled by the normal corpus access
privileges.

12.6 Creating plugins

12.6.1 Introduction to writing plugins

To write a plugin, you will need a reasonable knowledge of programming in general, and at least a basic
acquaintance with PHP specifically. It’s beyond the scope of this manual to explain programming/PHP
from the ground up; the PHP programming language is extensively documented at http://php.net.

A plugin takes the form of a PHP class (see http://php.net/class) that performs one or more
defined tasks. For example, a Custom Postprocess plugin takes a defined CQPweb query and changes
it (“postprocesses” it) in a certain way.

Each time you create a plugin, you should place it in a single file which has the same name as the
plugin itself. So, for instance, to create a plugin called MyPlugin you should create the PHP file
MyPlugin.php. You should then put that file into the plugins subdirectory of the lib directory (see
12.3, or else put a link to the code file in that subdirectory. Like all CQPweb code files, this new
file/link must be readable by the username your webserver runs under.

The file will normally contain nothing except the class that represents your plugin. You can add extra
functions/classes that will be called by your plugin, but this is unliekly to be useful except for the
most complex plugins (or for CEQL Extenders).

Each type of plugin has a separate PHP interface and your class must implement that interface to be
recognised as a plugin. Implementing an interface in PHP, as in some other object-oriented systems,

© 2020 Andrew Hardie and contributors 109

http://php.net
http://php.net/class

CQPweb System Administrator’s Manual 12 USING PLUGINS

means that the class must have methods that meet certain defined signatures. These are explained
below. If your plugin does not meet the definition of the interface it implements, things will stop
working.

The interface that your class needs to implement depends on what type of plugin you are writing:

Type of plugin Interface to implement Symbolic constant

Annotator Annotator PLUGIN_TYPE_ANNOTATOR

Format Checker FormatChecker PLUGIN_TYPE_FORMATCHECKER

Script Switcher ScriptSwitcher PLUGIN_TYPE_SCRIPTSWITCHER

Corpus Analyser CorpusAnalyser PLUGIN_TYPE_CORPUSANALYSER

Corpus Installer CorpusInstaller PLUGIN_TYPE_CORPUSINSTALLER

Postprocessor Postprocessor PLUGIN_TYPE_POSTPROCESSOR

Query Analyser QueryAnalyser PLUGIN_TYPE_QUERYANALYSER

Query Downloader QueryDownloader PLUGIN_TYPE_QUERYDOWNLOADER

CEQL Extender CeqlExtender PLUGIN_TYPE_CEQLEXTENDER

So the overall shape of the plugin file will be like this:

<?php

class MyPlugin implements Postprocessor

{

// you will need to add the methods here...

// plus any member variables you want to use

}

If you wish to make use of a base class (see 12.6.4 for an explanation of base classes), then the class
declaration should be:

class MyPlugin extends PostprocessorBase implements Postprocessor

[...]

The interfaces and base classes themselves are defined in the file lib/plugin-lib.php. The definitions
are heavily commented, and the text here is based in part on those comments; it’s highly recommended
to take a look at this code file if you are starting out writing a plugin. In the case of any discrepancy
between the information given here and the actual code, the actual code is correct (and the information
here is either incomplete or awaiting an update).

There should be no whitespace before the file’s leading <?php delimiter. If there is, CQPweb may stop
working properly.

The builtin plugins provided with CQPweb provide examples of how plugins can be written.

12.6.2 Naming your plugin

All plugin names must be legal PHP class names (see http://php.net/class). They share a names-
pace with the internal CQPweb classes, so try to make sure you don’t clash (PHP will crash if you
do). To be safe, always prefix your plugin classes with a unique element (e.g. your name). Also, class
names beginning with My_ are guaranteed to be safe.

© 2020 Andrew Hardie and contributors 110

http://php.net/class

CQPweb System Administrator’s Manual 12 USING PLUGINS

12.6.3 Methods your plugin must implement

This section describes each of the methods that you must implement to fulfil the demands of the
interface for each type of plugin. You can, of course, have other methods if you want, but nothing
outside the plugin will call them.

It is quite possible, and indeed expected, that in many cases you will want the major work of the
plugin to be done outside PHP - for example, by a command-line utility or by a Perl or Python script.
In which case, the PHP methods will be a thin wrapper round a call to an external system. CQPweb
does not care about this, as long as it can use the methods in the interfaces to get the information it
needs!

Note the documentation here is largely derived from the within-code documentation in
lib/plugin-lib.php. If the comments there are different from what you find here, then the for-
mer should be considered definitive as they may be more recently updated or more extensive.

12.6.3.1 Methods required by every type of plugin These methods are part of the
CQPwebPlugin interface, which is the parent of the interfaces for all of the specific types of plugin.

� public function __construct($extra_config = []);

This method initialises the plugin. The $extra_config is an array of key-value pairs, taken from
the plugin’s entry in the plugin registry (see

〈〈
crossref

〉〉
). This allows you to define multiple entries TODO

in the plugin registry from the same class, but with different configuration (for instance, the built-in
Annotator plugin for the TreeTagger needs to be told what language to tag in). What the plugin does
with these variables is determined by the code of the __construct method.

� public function description();

This method should return a string containing the title or short description of this plugin. This should
be relatively short, and not contain any HTML.

� public function long_description($html = true);

This method should return a string describing the plugin. This may (but need not) include HTML
formatting, where requested; and may either be the same as the string returned by description() or
be longer. Line breaks ("\n") in the string may be rendered as HTML line breaks in some contexts,
unless HTML is requested.

The method should respect the $html parameter by not including any HTML code in the string that
is returned if this parameter is false.

� public function status_ok();

This method should return boolean true if the plugin has not encountered any error conditions, or
boolean false if one or more error conditions has been encountered. If this method returns false,
something should be readable via the error_desc() method.

� public function error_desc($html = true);

This method should return a string describing the last encountered error.

If there has been no error, then it can return an empty string, or a message saying there has been no
error. It doesn’t matter which.

The method should respect the $html parameter by not including any HTML code in the string that
is returned if this parameter is false.

© 2020 Andrew Hardie and contributors 111

CQPweb System Administrator’s Manual 12 USING PLUGINS

12.6.3.2 Methods required by Annotator plugins

� public function process_file($path_to_input_file, $path_to_output_file);

Calling this method should tag the file specified as $path_to_input_file, placing the output at
$path_to_output_file.

Both arguments should be relative or absolute paths. The method SHOULD NOT use CQPweb
global variables. The input file MUST NOT be modified.

This function should return false if the output file was not successfully created. If the output file is
partially created or created with errors, it should be deleted before false is returned.

If all goes well, the method should return true.

� public function process_file_batch($input_paths, $path_to_output_file);

This method should process a group of input files, placing the output into a single file. All the
comments for process_file() apply here too. The return value should be boolean true or false,
just as for that method.

The $input_paths parameter will be an array of strings, where each string is the path to an input
file.

� public function output_size();

This method should return the size of the last output file created as an integer count of bytes, or zero
if no file has yet been specified.

12.6.3.3 Methods required by Corpus Installer plugins

� set_max_input_tokens($max);

Corpus Installers are controlled by permissions that specify how much text the user is allowed to index
at one time. CQPweb will use this method to tell the Corpus Installer what the maximum size is that
it should allow. The plugin should implement this method so as to store this value, and utilise it at
the appropriate time (usually: after tagging, before indexing).

The parameter is a count of tokens; if zero or a negative limit is set, no restriction at all should be
applied.

� public function set_corpus_name($name);

CQPweb will call this method to pass in to the Corpus Installer plugin the name (lowercase CQPweb
handle) of the corpus it is begin used to create. The method should store this value. The name of the
corpus is needed to create some of the corpus-installation setup SQL statements.

� public function add_input_file($path);

This method must add the file at the path provided to its list of files to be used as input for installation.
(The Corpus Installer plugin may pass these through to an Annotator, or else use them directly.)

The method should also accept an array of strings - all representing paths to input files.

© 2020 Andrew Hardie and contributors 112

CQPweb System Administrator’s Manual 12 USING PLUGINS

� public function do_setup();

/**

* Run setup - that is, anything that needs to be done to get files

* ready to be encoded. This might include tagging, or even building a corpus.

*

* @return bool True if setup worked OK; false if not.

*/

� public function do_cleanup($delete_input_files = false);

/**

* Run cleanup, e.g., deleting temporary files, if any.

* @param bool $delete_input_files If true, the files specified using

* CorpusInstaller::add_input_file() will be deleted.

*/

� public function get_charset();

This method should return the CWB string indicator for the character encoding of the corpus text.

(These days, usually “utf8”.)

� public function get_p_attribute_info();

/**

* Gets information about the p-attributes for cwb encoding

* (an array of strings for use with -P with cwb-encode).

* @return array

*/

� public function get_s_attribute_info();

/**

* Gets information about the s-attributes for cwb encoding

* (an array of strings for use with -S with cwb-encode).

*/

� public function get_annotation_bindings();

/**

* Gets the annotation bindings that will be used in the created

* corpus (for Simple Queries).

* @return array A hash with one or more keys referring to

* ’special’ syntax in CEQL, each mapping to

* the p-attribute that will be searched.

* For instance, ’primary_annotation’=>’pos’.

* The "tertiary_annotation_tablehandle"

* is the only non-p-attribute binding; it

* must be for a table that actually exists

* on the system, if not, declare_maptable()

* can be used.

*/

© 2020 Andrew Hardie and contributors 113

CQPweb System Administrator’s Manual 12 USING PLUGINS

� public function declare_maptable();

/**

* Hash of simple-pos to p-attribute regex. CQPweb will add it

* as a mapping table to the system. If you don’t want to bother

* with this, just have an empty function (which is what the

* CorpusInstallerBase does).

*

* @return array

*/

〈〈
change code comments to writeup!

〉〉
TODO

12.6.4 Methods you can inherit

The plugin system includes “base classes” which contain implementations of several important tasks
for various types of plugin. If you write your plugin to inherit from such a base class, then you do
not have to write code for these tasks yourself. It is highly advisable to make use of these base
classes. (But if you don’t want to, you don’t have to, even if you inherit from a base class: any
method in a base class can be overridden in a child class simply by creating a method of the same
name.)

The base classes all have the same name as the corresponding interface with the addition of Base at
the end. The facilities they provide are listed below.

12.6.4.1 CQPwebPluginBase CQPwebPluginBase is the parent of the other base classes. There-
fore, its methods are passed on to those base classes. This base class provides...

� A default __construct() method, which simply stores each key-value pair from the
$extra_config as an object variable; the variable name is the key string, the variable value
is the value. So if this method is passed, say, the pair "action_type" => "x" as part
of $extra_config, then other methods will be able to refer to the object member variable
$this->action_type, whose initial value is “x”.

� A default implementation for the long_description() method (making it return the same as
description(), which all plugins must still provide).

� A default error reporting system, which provides implementations for status_ok() and
error_desc() as well as an extra method, raise_error(), which sets the error state (and logs
the message passed as its sole parameter to be returned by any subsequent call to error_desc()).
raise_error() can only be called from within a child class; examples of its usage can be found
in various builtin plugins.

12.6.4.2 AnnotatorBase This base class provides...

� A text ID generation system. All CQPweb input data must have <text> tags with id="..."

attributes. Annotators generally need to add these, as they are likely not to be present in the
input, or to have been removed by the tagger. The AnnotatorBase provides multiple ways to
generate an ID for each input text, that can then be incorporated into the output. The function
to access this is AnnotatorBase::get_next_text_id().

© 2020 Andrew Hardie and contributors 114

CQPweb System Administrator’s Manual 12 USING PLUGINS

� A pair of support functions, validate_read_paths() and validate_write_paths(), each of
which checks an array of file paths to make sure they are, respectively, readable/writeable.

� A simple implementation of output_size() which returns the value of an internal variable,
$bytes_in_output. Child classes which wish to use this need to actually set that class property
(as $this->bytes_in_output) when object instances are created.

� Null implementations of output_annotation_list() and output_xml(), which always return
false, allowing child classes to not bother implementing these methods.

12.6.4.3 FormatCheckerBase This base class provides...〈〈
Write this section when this plugin type is enabled.

〉〉
TODO

12.6.4.4 ScriptSwitcherBase This base class provides...〈〈
Write this section when this plugin type is enabled.

〉〉
TODO

12.6.4.5 CorpusAnalyserBase This base class provides...〈〈
Write this section when this plugin type is enabled.

〉〉
TODO

12.6.4.6 CorpusInstallerBase This base class provides...

� Multiple systems for creation of the necessary SQL statements / CWB declarations for annota-
tions and XML (p-attributes and s-attributes).

– Via declare_annotation() and declare_xml(): methods that the child class can use to
pass in information about the attributes.

– Via declare_annotations_from_template() and declare_xml_from_template():
methods which can be passed template ID numbers, from which the information will be
taken.

– Via declare_content_from_annotator(): a method to which a child class can pass its
Annotator object, whose interface will then be interrogated to get information about the
attributes.

� A default system for setting, and then retrieving, CEQL bindings: the set_binding() method
allows them to be set, and the implementation of get_annotation_bindings() returns them.

� Default implementations of the following methods, which will work alongside any of the different
systems mentioned above, and report the declared structures to CQPweb:

– set_max_input_tokens() - stores a token limit in an internal variable, which the child
class can use, or which can be applied with restrict_input_data() (see below).

– set_corpus_name() (plus an internal utility function, check_for_corpus_name(), to make
sure it has been called)

– get_sql_for_corpus()

– get_sql_for_abort()

– get_p_attribute_info()

– get_s_attribute_info()

– get_infile_info()

© 2020 Andrew Hardie and contributors 115

CQPweb System Administrator’s Manual 12 USING PLUGINS

– get_charset() - returns the internal variable charset; the child class needs to set this

– get_xml_datatype_check_needed() - returns the internal variable
xml_datatype_check_needed, which is false by default; the child class can set this
to true if desired.

� Default implementations of the following additional methods:

– add_input_file() - for use alongside get_infile_info()

– do_cleanup() - which deletes temporary files (and does nothing else).

� A utility function, restrict_input_data(), designed to be called by do_setup(), which makes
sure the input files do not exceed the limit set by set_max_input_tokens()

� An alternative to set_max_input_tokens(), the method
set_restriction_from_privilege(), which can be passed a privilege object, from which the
object will extract a token limit.

� A null implementation of declare_maptable(), allowing child classes to not bother implement-
ing this method.

12.6.4.7 PostprocessorBase This base class provides...〈〈
Write this section when this plugin type is enabled.

〉〉
TODO

12.6.4.8 QueryAnalyserBase This base class provides...〈〈
Write this section when this plugin type is enabled.

〉〉
TODO

12.6.4.9 QueryDownloaderBase This base class provides...〈〈
Write this section when this plugin type is enabled.

〉〉
TODO

12.6.4.10 CeqlExtenderBase This base class provides...〈〈
Write this section when this plugin type is enabled.

〉〉
TODO

12.6.5 An API for plugin writers

When you write a plugin, the whole of CQPweb’s internal function library is theoretically available
for you to call. However, unless you really know what you are doing, it is not recommended to just
start calling functions all over the place. Something may go wrong.

That said, there are clearly bits of information that you might need inside a plugin that are not
provided via the methods’ parameters. For instance, in a Custom Postprocess where you need to
keep or reject each concordance hit, it would be nice if you could find out what each concordance hit
actually contains! You could do this by accessing CQPweb’s interaction layer with the CQP backend
for yourself, but that’s prone to all those problems discussed above

So CQPweb provides a set of helper functions that you can call to access other bits of info in such
a way that it’s “guaranteed” not to mess things up (barring bugs we don’t know about yet). There
are currently three such functions (not tested as of the current version), all designed to be of use in
writing Custom Postprocesses. Their function prototypes and internal documentation are provided
below.

© 2020 Andrew Hardie and contributors 116

CQPweb System Administrator’s Manual 12 USING PLUGINS

/*

* Returns a path that can be used as a temporary filename by a plugin.

* The plugin is responsible for making sure it gets deleted.

* (It will be pre-created as a temporary file.)

*/

function pluginhelper_get_temp_file_path();

/**

* Gets a full concordance from a set of matches.

*

* The concordance is returned as an array of arrays. The outer array contains

* as many members as the $matches argument, in corresponding order. Each inner array

* represents one hit, and corresponds to a single group of two-to-four integers.

* Moreover, each inner array contains three members (all strings): the context

* before, the context after, and the hit itself.

*

* The $matches array is an array of arrays of integers or integers as strings,

* in the same format used to convey a query to a custom postprocess.

*

* You can specify what p-attributes and s-attributes you wish to be displayed in the

* concordance. The default is to show words only, and no XML. Use an array of strings

* to specify the attributes you want shown in each case.

*

* You can also specify how much context is to be shown, and the unit it should be

* measured in. The default is ten words.

*

* Individual tokens in the concordance are rendered using slashes to delimit the

* different annotations.

*/

function pphelper_get_concordance($matches,

$p_atts_to_show = ’word’,

$s_atts_to_show = ’’,

$context_n = 10,

$context_units = ’words’

);

/**

* Determines whether or not the specified corpus position (integer index) occurs

* within an instance of the specified structural attribute (XML element).

*

* Returns a boolean (true or false, or NULL in case of error).

*/

function pphelper_cpos_within_structure($cpos, $struc_attribute);

/**

* Gets the value of a given positional-attribute (word annotation)

* at a given token position in the active corpus.

*

* Returns a single string, or false in case of error.

*/

function pphelper_cpos_get_attribute($cpos, $attribute);

© 2020 Andrew Hardie and contributors 117

CQPweb System Administrator’s Manual 12 USING PLUGINS

12.7 Builtin plugins

Some plugins are provided with the CQPweb distribution. However, they will not be available in the
web interface until you add them to the system, as explained in section 12.4.

There are two types of builtin plugin: those supplied purely as examples of how to write a plugin, and
those supplied because they are expected to be generally useful to lots of different users. All can be
found in the lib/plugins directory.

But beware! These plugins may be under development (or may relate to types of plugin whose
integration into CQPweb is not yet complete).

12.7.1 DeleteEveryThirdHit

DeleteEveryThirdHit is an example of a custom postprocess, to illustrate how they are written. It
is not a postprocess you would ever actually want to use, because its function (thinning a query) is
implemented better as one of CQPweb’s internal postprocesses.

Extra configuration:

� None.

12.7.2 BasicTokeniser

This is a very simple, but usable, Annotator. It processes input files to produce tokenised output
in CWB vertical format. It will only work with data in languages that use whitespace as a token
delimiter (i.e. not Chinese, Thai, etc.)

Extra configuration:

� None.

12.7.3 TreeTagger

This Annotator is designed to interface with the TreeTagger software (see http://www.cis.

uni-muenchen.de/~schmid/tools/TreeTagger/).

It makes certain assumptions about how the TreeTagger installation files are to be found on the system;
if your TreeTagger installation is laid out differently, then you might not be able to use this plugin.

The class contains configuration information for a large number of the parameter files available on
the TreeTagger website for various languages. Again, if you haven’t downloaded the parameters for a
given language, you won’t be able to use the plugin to tag files in that language.

Extra configuration:

� tt_no_s_tags - Boolean, if true, sentence tags (s) will not be added to the TreeTagger output.

� tt_show_unknown_lemma - Boolean, if true, words whose lemma is unknown will be tagged as
<unknown>, rather than supplying the wordform as “its own lemma”. The default behaviour of
the plugin is for both this and the previous setting to be false. That is contrary to the default
TreeTagger behaviour, but is the normal way to use TreeTagger with CQPweb.

© 2020 Andrew Hardie and contributors 118

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

CQPweb System Administrator’s Manual 12 USING PLUGINS

� tt_bin_path - string, path to the TreeTagger installation folder (i.e. the directory which contains
the bin, cmd, and lib subdirectories).

� language - string, sets the language to tag in. The valid language labels are abbreviated from
the descriptions of the corresponding parameter sets as distributed via the TreeTagger website.
Possible languages are those used as keys in the LANG INFO array (which can be found at
the bottom of the TreeTagger class; a utility function (static class method) is provided to check
language-identifier strings (TreeTagger::is_valid_language()).

12.7.4 UcrelTagger

This Annotator is a very thin wrapper around the Lancaster University UCREL research centre’s dual
taggers, namely CLAWS (part of speech) and USAS (lemmata and semantic tags), via a controller
script that generates CQPweb-ready output. It is only of use to you if you are already running CLAWS
on your machine.

See:

� http://ucrel.lancs.ac.uk/claws/

� http://ucrel.lancs.ac.uk/usas/

Extra configuration:

� Many possible items, not documented here (yet).

12.7.5 BasicVrtInstaller

This installer assumes input files that are already in vertical format (and therefore do not need to be
tagged).

Extra configuration:

� Does not make use of any extra configuration values.

12.7.6 SimplePlaintextInstaller

This is a simple corpus installation manager assuming plain-text input files. It calls a configurable
Annotator in a standard way.

Extra configuration:

� annotator_plugin_id - integer ID for the plugin registry entry of the Annotator plugin to use
to tag the files.

� vrt_file_path - (optional) path specifying where to place the output file; if not given, a tem-
porary location will be used.

© 2020 Andrew Hardie and contributors 119

http://ucrel.lancs.ac.uk/claws/
http://ucrel.lancs.ac.uk/usas/

CQPweb System Administrator’s Manual 12 USING PLUGINS

12.7.7 StandardToolInstaller

This is a corpus installer which uses the UcrelTagger and TreeTagger Annotators.

Extra configuration:

� tool - a string (“UCREL” or “TreeTagger”) to tell the plugin which Annotator to use.

� language - a string that will be passed through to the TreeTagger plugin (see above).

� semtag-resources - a string that will be passed through to the UcrelTagger plugin (see above).

� annotation_template_id - integer ID of the annotation template describing the tagger output.

� xml_template_id - integer ID of the annotation template describing the tagger output.

The last two of these are optional. If they are not supplied, the plugin will find the templates itself
(this will work fine as long as you have installed the default annotation and XML templates; see 6.7,
6.9).

© 2020 Andrew Hardie and contributors 120

CQPweb System Administrator’s Manual 13 USER CORPORA

13 User corpora

13.1 Introduction〈〈
write full chapter.

〉〉
TODO

© 2020 Andrew Hardie and contributors 121

CQPweb System Administrator’s Manual 14 EXTENSIBLE CQPWEB

14 Extensible CQPweb

14.1 Introduction

This chapter explores the various ways of extending CQPweb by adding your own code to support
features that it doesn’t possess out-of-the-box.

14.2 Extending CQPweb with non-PHP modules

14.2.1 Overview

CQPweb is written in PHP. However, it is possible to write an extension for CQPweb in some other
programming language, and then connect it to CQPweb using builtin tools for this purpose.

This is useful, for instance, with plugins. Plugins must be written in PHP, but it is quite possible to
write a plugin which does nothing but delegate its task to a module in Python or R or Perl, and then
interpret the results into the for that CQPweb expects.

〈〈
add xref for ”plugins” to the above

〉〉
TODO〈〈

more
〉〉

TODO

14.2.2 Perl〈〈
explain how to use it.

〉〉
TODO

14.2.3 Python〈〈
explain the PyFace interface.

〉〉
TODO

14.2.4 R〈〈
explain the RFace interface

〉〉
TODO〈〈

add node js as nodeface? people seem to like it.
〉〉

TODO

14.3 CQPweb Applications〈〈
explain them

〉〉
TODO

© 2020 Andrew Hardie and contributors 122

CQPweb System Administrator’s Manual 15 USING THE CQPWEB API

15 Using the CQPweb API

15.1 Introduction

Use of the CQPweb API is, strictly speaking, not a system administration topic. However, effective
use of the API requires some detailed knowledge of how the system works, and so it is convenient to
include the topic in this manual.

The API was added, in rudimentary form, in version 3.2.32 and gradually refined through to versions
3.2.42 and 3.3.0+.

15.2 Structure of API HTTP requests

The API is accessed via a single entry point, the script api.php. All requests - even those which are
associated with specific CQPweb URLs such as concordance.php - go via this entry point.

To use the API, you need to construct an HTTP request which specifies the function you want to call
and the values of the arguments you wish to pass.

Requests to the API can be either GET or POST requests; the outcome is the same either way.

The URL for the request should be the standard URL for the corpus you wish to access, represented
below by the placeholder $corpus , plus api.php. In the remainder of this chapter, this URL will be
assumed to have the following form:

http://your.server.net/path/to/cqpweb/$corpus/api.php

Instead of a corpus handle, you can use the paths

http://your.server.net/path/to/cqpweb/usr/api.php

or

http://your.server.net/path/to/cqpweb/exe/api.php

for function calls that don’t relate to any particular corpus. (For such functions, specifying a corpus
is not wrong ; it just has no effect.)

Finally, for user corpora, the path to the corpus involves additional levels:

http://your.server.net/path/to/cqpweb/usr/61/anybody/_00128/api.php

... as per usual.

References to api.php in the remainder of this chapter should be interpreted as shorthand for the
appropriate URL as described above.

© 2020 Andrew Hardie and contributors 123

CQPweb System Administrator’s Manual 15 USING THE CQPWEB API

15.3 Calling a function

The function you wish to call should be specified to the API as the HTTP parameter f.

Using HTTP GET, this is specified in the URL as follows:

� api.php?f=name of function

The parameters of the function (if it has any) are also encoded as HTTP parameters, with the param-
eter name being the same in both the API definition and the HTTP request.

While the function definitions present the parameters in a particular order, this is a convenience for
the reader. In fact, the function parameters can be added to the URL in any order (as can even the f
parameter).

The URL for a function call with three arguments specified might, then, look like this:

� api.php?f=name of function &arg1=something &arg3=something+else &arg2=23%2A

Using HTTP POST, the request would look something like this overall:

POST /path/to/cqpweb/$corpus/api.php HTTP/1.1

Host: your.server.net

Content-Type: application/x-www-form-urlencoded

f=name_of_function&arg1=something&arg3=something+else&arg2=23%2A

15.4 Parameters and types

Parameters are all transmitted as strings - because HTTP parameter values are, fundamentally, strings.

However, upon reaching the server, parameters are treated as being typed: the type determines how
CQPweb will treat them.

So, for instance, integer arguments (int) are transmitted as strings, but then are always typecast to
integer by CQPweb before being used.

The following pseudo-types are used in describing the API parameters and return values:

void Indicates no parameters or no return value (i.e. content of the response object will be null).

bool Boolean; can be true or false only (encoded as “1” and “0” respectively).

int Integer (encoded as decimal, with no thousand-separators).

float Floating-point number (encoded in one of the forms that PHP can typecast from string to float,
using the standard C strtod() function).

string String data; should be URL-encoded.

array Numerically indexed array of any number of identically-typed values. The API does not use
any array parameters, but functions may return arrays.

object Associative array or hash (which, in JavaScript, is the same thing as an object). As with
arrays, this is a return type, not a parameter type.

© 2020 Andrew Hardie and contributors 124

CQPweb System Administrator’s Manual 15 USING THE CQPWEB API

In section 15.7, every function is given a signature, that is a specification of its return type and
parameter names and types.

For example, this is the signature of the function log in:

� void log in(string username, string password [, bool persist])

The return type is given before the function name.

After the function name, within brackets is a list of parameters. Each one is given as a type, followed
by the name of the parameter. Commas separate the different parameters.

Compulsory parameters are given first. Optional parameters follow. The set of optional parameters is
enclosed in square brackets. If there are no parameters at all, the single word void will be given inside
the function’s brackets.

So, the signature above indicates a function that has no return value (i.e. it will send back null),
and must be called with two compulsory string arguments, with the names username and password.
There is a third argument, but it is optional; its type is Boolean.

The discussion of log in in section 15.7.5 expands on the summary that the function signature pro-
vides.

15.5 Structure of API HTTP responses

The response from the API entry point will always be a single object, encoded in JavaScript Object
Notation (JSON).

This object has four possible member variables:

� status - string; simple status flag, either ok or error.

� errno - status code describing the exact problem.

� content - a value of any kind representable in JSON, this is the return value from the API
function that was called. It may be absent in case of error.

� errors - array of strings (debug and error messages).

The procedure on receipt of this response object should be as follows:

� Check that its status flag is set to ok.

� If yes: take the function call’s return value from content and proceed.

� If no: examine the error number and error message array to try to determine what went wrong,
and at what point.

The type of the return value is specified per function. It could be a single value (string, integer,
floating-point, Boolean) or a complex value (an array or an object).

JSON does not have a concept of associative arrays (hashes/dictionaries) distinct from objects, which
is why the CQPweb API does not distinguish objects from associative arrays in its return types. Any
return values of type object (unless otherwise specified in the documentation below) are derived from

© 2020 Andrew Hardie and contributors 125

CQPweb System Administrator’s Manual 15 USING THE CQPWEB API

PHP objects of class stdClass (the ultimate ancestor of all PHP classes, and default class of objects
with no specified class).

Likewise, JSON does not distinguish integers from floating-point numbers, using a single floating-point
type for both; so, when the return type is specified as an integer, what this really means is that it is
a floating-point number converted from a PHP integer.

JSON null is used for the content member variable if the function has no return value (i.e. its return
is of type void).

15.6 Logging in and use of login tokens

In order to use a CQPweb server, you must be logged in as some user. The set of corpora that you
can access via the API will be the same as the set of corpora that your user account can access via
the browser.〈〈

more
〉〉

TODO

15.7 Available functions

The following functions can currently be called in the API.

15.7.1 string get version(void)

Find out what version of CQPweb the server is running.

� Returns: String in the form “major.minor.increment”

15.7.2 string get cwb version(void)

Find out what the version of the CWB core the server is running.

� Returns: String in the form “major.minor.increment”

15.7.3 array list api functions(void)

Get a list of functions exposed by the API. This may not be precisely the same as the list in this
chapter, depending on how up-to-date the server and your copy of this manual is!

� Returns: Array of strings (names of functions)

15.7.4 string get api error info(int code)

Get information about what a particular API error code indicates.

� code: integer error code.

� Returns: A string describing the error indicated by the code.

© 2020 Andrew Hardie and contributors 126

CQPweb System Administrator’s Manual 15 USING THE CQPWEB API

15.7.5 void log in(string username, string password [, bool persist])

Log in to CQPweb. A username and password must be supplied; the persist parameter is optional.

� username: Username of the account to log in as.

� password: That account’s password.

� persist: true is equivalent to ticking the “stay logged in” checkbox on the form in the browser.
It will give all login tokens a much longer lifespan, one that might well last between sessions.
The default is false.

This is a void function, i.e. it returns null regardless of the outcome. Any problem logging in is treated
as an error, and an appropriate error code and/or message will be transmitted back within an object
in error state.

15.7.6 void log out(void)

Log out of CQPweb.

15.7.7 array fetch freqlist([int subcorpus, string annotation, string filter, string fil-
ter type, int freq max, int freq min, string sort])

Fetch the complete data of a frequency list (by default, of the whole corpus; if one is specified, of a
subcorpus).

All parameters are optional.

� subcorpus: Integer ID of a subcorpus; the frequency list of that subcorpus will be returned.

� annotation: Handle of the annotation (p-attribute) to fetch frequency data for. Defaults to
word.

� filter: A string used to determine which items are included in the returned frequency data.

� filter type: One of begin, end, contain, exact (defaults to begin). Controls how the filter

argument is interpreted.

begin Only items that begin with the filter string will be returned.

end Only items that end with the filter string will be returned.

contain Only items that contain the filter string (anywhere) will be returned.

exact Only items that exactly match the filter string will be returned.

� freq max: Only items with this number of occurrences or fewer will be returned. Defaults to
unlimited.

� freq min: Only items with at least this number of occurrences will be returned. Defaults to 1.

� sort: One of desc, asc, alph (defaults to desc). Controls how the returned data is sorted.

desc Sort by frequency, highest first (ties broken by alphabetical order).

asc Sort by frequency, lowest first (ties broken by alphabetical order).

alph Sort alphabetically (ties broken by frequency, higher first).

� Returns: Array of arrays. Each inner array represents a row of the frequency table, and thus has
two values in it: the first is the type, the second is its frequency (string and integer, respectively).

© 2020 Andrew Hardie and contributors 127

CQPweb System Administrator’s Manual 15 USING THE CQPWEB API

15.7.8 array fetch query history([int limit])

Fetch the contents of the logged-in user’s query history for the present corpus.

� limit: A maximum of limit history entries will be returned; default is unlimited.

� Returns: Array of objects. Each object represents a single history entry, and has the following
members:

timestamp String. Time when the query ran (in SQL timestamp format).

simple query String. The simple query (if CEQL was used in the query).

cqp query String. The CQP syntax query that was entered or that was generated from the
simple query.

query mode String. Indicator of the mode used to ruin this query. One of sq case, sq nocase,
cqp.

query scope String. Serialised representation of the sub-part of the corpus that was searched.
N.B.: in future, the API may be amended to return something more tractable than just a
string here.

n hits Integer. Number of hits returned. May be zero; can also be -1 or -3 to indicate a CEQL
syntax error or a CQP run error, respectively.

15.8 Roadmap for future functions

� download query

� tabulate query

� get list of p- and s-attributes

� get list of active CEQL syntax

� create subcorpus

� compile subcorpus frequency list

� text / IDLINK metadata

� corpus statistics

� keywords

� dispersion

� distribution

� collocations

� frequency breakdown

� query postprocesses

� ... lots more ...

© 2020 Andrew Hardie and contributors 128

CQPweb System Administrator’s Manual 15 USING THE CQPWEB API

15.9 The CQPweb Client〈〈
The text in this section reflects how the client objects are intended to work; as of 2019-07, they don’t TODO

actually work like this, as they are unfinished.
〉〉

Client object classes are provided in a number of languages. Using them can make working with the
API a little easier.

All the different languages follow, as closely as possible, the same object model.

They implement three types of method:

� Methods for managing the state of the client object. The client will monitor all state of your
interaction with the server (e.g. your login), saving you from doing that explicitly. These
methods include ok(), set secrets(), set corpus(), get error messages(), and so on.

� A method that encapsulates all the steps making a call to the API. This method, call(), takes
only two parameters: first a string naming the function to run, most conveniently specified using
one of the API FUNC constants; and second an associative array (or hash, or dictionary) of
argument names mapping to argument values for the function call.

� Convenience methods for certain commonly used API functions: log in(), log out(),
get version(), get cwb version(), list api functions(), get api error info() and so on.
All these functions could also be accessed with call(), of course.

The main differences among the clients for different languages are as follows:

� The JavaScript version uses asynchronous processing, in keeping with its likely use in web
browsers.

� The C version’s methods often require extra arguments, or different calling conventions, to deal
with memory management.

� Some versions allow a callback function to be passed to call() to process the data received from
the server before it is returned. Others do not (yet) have this.

Here is how to use any one of these client systems in your own code:

� Add the CQPwebClient class. How this is done depends on the language; import in Python,
include() in PHP, etc.

� You should now have available to you (a) a class called CQPwebClient; (b) a set of constants
prefixed API FUNC , each of which evaluates to a function name; (c) a set of constants prefixed
API ERR , each of which evaluates to an integer error code that the API might raise.

� The constants may be implemented as variables, if you are using a language where constants
aren’t really a thing. For instance, in Python they are module-level variables; in JavaScript they
are global variables.

� Create a CQPwebClient object using its constructor method, which takes a single argument: the
URL of the CQPweb instance you wish to connect to.

� Use the set secrets() method to specify username and password.

� Use the log in() method to connect.

© 2020 Andrew Hardie and contributors 129

CQPweb System Administrator’s Manual 15 USING THE CQPWEB API

� Use the set corpus() method to specify a corpus.

� Call API functions through the call() method. This takes the API function name as its first
argument (you can use a string literal, or - to limit typo risk - one of the API FUNC constants)
and a hash/associative array/dictionary/object of named parameters to pass to api.php as its
second argument.

� Check if the call went well with the ok() method.

� If it went fine, use the return value from call() to do whatever further processing you need
(possibly including more calls to the server).

� If the client object’s state is not OK, use methods get error code() and/or get error messages()
to build a meaningful error message, and do something with it.

� Repeat calls to the server as necessary.

� Log out with method log out() - not strictly necessary, but makes things tidy.

� Unset/delete the client object (if necessary).

An example of this process, using the PHP client object, follows.〈〈
Call to log in() seems to be missing below?

〉〉
TODO

<?php

// Script exemplifying use of the CQPweb API

// via one of the client objects.

// Import the client class & its constants;

// we assume the code file is in the working directory.

include("CQPwebClient.php");

// Create client & set its secrets.

$c = new CQPwebClient("http://my-server.net/cqpweb");

$c->set_secrets("useraccount", "super secret passphrase");

// request the frequency list from the BNC1994.

$c->set_corpus("bnc1994");

$arg_hash = ["freq_min" => 50, "sort" => "alph"];

$fl = $c->call(API_FUNC_FETCH_FREQLIST, $arg_hash);

// check whether call ran correctly.

if ($c->ok())

{

// If everything is OK, print out the list as table.

echo "BNC1994: Word types with frequency no less than 50\n";

foreach($fl as $row)

echo $row[0], "\t", $row[1], "\n";

}

else

{

// if not, print error diagnostics and exit.

echo "CQPwebClient returned an error after calling "

© 2020 Andrew Hardie and contributors 130

CQPweb System Administrator’s Manual 15 USING THE CQPWEB API

, API_FUNC_FETCH_FREQLIST

, "with arguments as follows: \n\t"

, print_r($arg_hash, true), "\n"

;

echo "The error messages sent from the server were as follows:\n\t"

, implode("\n\t", $c->get_error_messages()), "\n\n"

;

exit(1);

}

exit(0);

© 2020 Andrew Hardie and contributors 131

CQPweb System Administrator’s Manual 16 UPDATING CQPWEB

16 Updating CQPweb

16.1 The update process

In general, to update CQPweb to a new version, there are three steps to take. The first step is always
necessary, but the second two steps will only be needed when there have been major changes. The
steps are:

� Check for new dependencies;

� Update the code;

� Update the database;

� Update the configuration file.

New dependencies on other pieces of software are rarely added. They will always be noted here when
they are added:

� In version 3.1.7, a requirement for the R statistical software to be available was added (it was
previously optional).

To update the code, simply get a new copy of the code from the CWB website, and copy the files
over your existing installation. Be careful not to alter any of the folders relating to corpora you have
installed. If your CQPweb is running from a Subversion checkout, then the following command, when
run from the base directory, will typically complete all requisite actions:

� svn update

To update the database, you need to run the admin script upgrade-database.php. There is further
information on this script in section 5.13. If you are upgrading a very old version of CQPweb, you
may need to perform some updates manually; see section 16.2 below.

Updating the configuration file rarely needs to be done, as we make efforts to keep it consistent.
The format of the configuration file changed between versions 3.0.16 and 3.1.0, and then again between
3.2.42 and 3.3.0. The changes are discussed in section 2.6.

Some updates may require additional actions as well as these three steps; if so, these are explained
below.

16.2 Updating the database from very old versions

Early versions of CQPweb required MySQL schema changes to be implemented manually. A full list
of the changes from version 2.15 to version 3.0.16 is given below. In each case, the SQL command
given needs to run against the CQPweb database when logged in either as root or as the CQPweb
database user. You need to run all the commands between the version you are upgrading from and
the version you are upgrading to, inclusive (i.e. the list that follows is cumulative). Sometimes other
steps are necessary, and they are listed too.

� Going from 2.15 to 2.16

– alter table user settings drop key `username`;

© 2020 Andrew Hardie and contributors 132

CQPweb System Administrator’s Manual 16 UPDATING CQPWEB

– alter table user settings add primary key (`username`);

– alter table user settings add column `password` varchar(20) default NULL;

� Going from 2.16 to 3.0.0

– No database changes.

� Going from 3.0.0 to 3.0.1

– CREATE TABLE `corpus categories` (`idno` int NOT NULL AUTO INCREMENT,

`label` varchar(255) DEFAULT '', `sort n` int NOT NULL DEFAULT 0, PRIMARY

KEY (`idno`)) CHARACTER SET utf8 COLLATE utf8 general ci;

– ALTER TABLE `corpus metadata fixed` MODIFY COLUMN `corpus cat` int DEFAULT

1;

– Since this upgrade will wipe out your existing corpus categories, you must re-add them.

� Going from 3.0.1 to 3.0.2

– DROP TABLE IF EXISTS `xml visualisations`;

– CREATE TABLE `xml visualisations` (`corpus` varchar(20) NOT NULL,

`element` varchar(50) NOT NULL, `xml attributes` varchar(100) NOT

NULL default '', `text metadata` varchar(255) NOT NULL default '',

`in concordance` tinyint(1) NOT NULL default 1, `in context` tinyint(1) NOT

NULL default 1, `bb code` text, `html code` text, key(`corpus`, `element`)

) CHARACTER SET utf8 COLLATE utf8 bin;

– Go to System diagnostics and run the check for ``PHP inclusion files''

� Going from 3.0.2 to 3.0.3

– ALTER TABLE `xml visualisations` DROP KEY `corpus`;

– ALTER TABLE `xml visualisations` ADD COLUMN `cond attribute` varchar(50)

NOT NULL default '';

– ALTER TABLE `xml visualisations` ADD COLUMN `cond regex` varchar(100) NOT

NULL default '';

– ALTER TABLE `xml visualisations` ADD PRIMARY KEY (`corpus`, `element`,

`cond attribute`, `cond regex`);

– ALTER TABLE user settings add column thin default reproducible tinyint(1)

default NULL;

– UPDATE user settings set thin default reproducible = 1;

� Going from 3.0.3 through to 3.0.16

– Nothing.

From version 3.1.0 onwards, the database template can be updated automatically by running the
admin script upgrade-database.php. However, before you do this, you must manually apply all the
relevant updates from the list above if you are moving from a version earlier than 3.0.16.

© 2020 Andrew Hardie and contributors 133

CQPweb System Administrator’s Manual 16 UPDATING CQPWEB

16.3 Updating from version 3.0.16 to version 3.1.0

This is a major upgrade, and careful adjustment will be needed. The following steps should be followed
in order.

Step 1. Update the code (see section 16.1).

Step 2. Update your configuration file, to take account of the changes in the format listed in section
2.6.

Step 3. Update the database using the upgrade script described in section 5.13.

The above steps are essential. Some further steps are useful if you previously managed users/groups
and their access rights using CQPweb’s interface to Apache:

� Restore your previous groups using load-pre-3.1-groups.php (see section 5.9)

� Restore your previous privileges using load-pre-3.1-privileges.php (see section 5.10)

� Either (a) remove all .htaccess files from the web folders for particular corpora and/or (b) turn
off the use of .htaccess files within the CQPweb web folder completely (see section 1.11 for a
full account of setting up Apache under CQPweb 3.1 and higher).

Note that the first two of the above steps must be followed in that order, and after you have upgraded
the database.

16.4 Updating from version 3.1.7 or earlier to version 3.1.8 or later

In version 3.1.8, the limit on how big a frequency list a user can create was changed from a single
global value to a configurable privilege.

This means that, having upgraded to 3.1.8 or higher, you will need to use the Admin Control Panel
(see 3) to add at least one privilege of this sort to your system, and assign it to users/groups.

The four default privileges of this sort enable users to create frequency lists for subcorpora of 1 million,
10 million, 25 million and 100 million tokens.

At least one privilege of this sort should normally be assigned to the “everybody” group, or else these
users will not be able to create frequency lists for subcorpora at all.

16.5 Updating from version 3.1.8 or earlier to version 3.1.9 or later

In version 3.1.9, the “Analyse Corpus” function was added to CQPweb. In order to add the webpage
supporting this function to existing corpora, you should go to the Admin Control Panel (see 3), and
run the “Check corpus PHP inclusion files” function (found under System diagnostics).

16.6 Updating to version 3.2.0

There were substantial architectural changes in version 3.2.0, which is why it was a major version
change. Although these changes caused little to be different on the surface, they were an essential step
towards future developments.

If all goes well in the upgrade you will never need to know what the changes are. However, if something
goes wrong, you may need the following information on the architectural changes to be able to effect
a manual repair. The differences are as follows:

© 2020 Andrew Hardie and contributors 134

CQPweb System Administrator’s Manual 16 UPDATING CQPWEB

� In earlier versions, each corpus had a separate web folder inside the main CQPweb directory,
with a set of PHP scripts in it. In 3.2.0 this was changed so that there was a single location for
the corpus-interface scripts (the built-in sub-directory exe) and each corpus’s web folder is now
a symbolic link to exe.

� In earlier versions, a lot of important information about each corpus was stored in its “settings”
file, stored in its web folder (filename settings.inc.php). In 3.2.0 all this information is
transferred to the database, and the settings files are removed.

� In earlier versions, CQPweb relied on the CWB registry to keep track of s-attributes (XML
elements/attributes). In 3.2.0, CQPweb has a database structure that keeps track of this infor-
mation.

To upgrade from version 3.1.16 (or earlier) to version 3.2.0 (or later), you should follow these steps.

Step 1. It’s recommended to take a backup copy of the entire web-directory containing the code of
CQPweb and the web folders of the individual corpora before starting.

Step 2. Update the code (see section 16.1).

Step 3. Update the database using the upgrade script described in section 5.13.

Normally, the database upgrade script will bring the system right up to the current version of the code.
However, it will always stop at version 3.2.0, to allow you to map across the corpus/XML settings
from the earlier format. If your code version is above 3.2.0, you will need to run the database upgrade
script again after finishing the rest of these steps.

Step 4. Run the special script to transfer existing corpus/XML settings to the new format.

The script for this step is listed in 5.11. To run it, go into the bin subdirectory, and enter the following
command:

� php load-pre-3.2-corpsettings.php

The script goes through your list of corpora, and for each corpus it finds, it takes the following actions:

� First, it loads that corpus’s settings file and inserts the information it finds into the SQL database.

� Second, it attempts to replace the corpus’s web folder with a symbolic link to the exe folder.

� Third, it interrogates the CWB registry to discover the corpus’s s-attributes, and creates a record
of each attribute in the database.

Step 5. You may see error messages from the special script if any step of the process does not complete
correctly, so the next step is to address these messages by making manual adjustments.

� If no settings file is found for a particular corpus, this is probably not a problem: the setup of
the corpus in question was already broken.

� If the script reports that, for a particular corpus, it could not replace the web directory with a
symlink, then the manual fix for this is to run the following shell commands within the CQPweb
main directory:

– rm -r corpus

– ln -s exe corpus

© 2020 Andrew Hardie and contributors 135

CQPweb System Administrator’s Manual 16 UPDATING CQPWEB

but with the actual corpus handle instead of “corpus”! You may then need to adjust the owner-
ship/permission of the resulting symlink (see notes on web-directory ownership and permissions
in 1.4).

Step 6. In earlier versions, as noted above, the “settings” file stored key information. It was possible
for system administrators to manually add variables/code to these files, to add extra tweaks to the
interface on a per-corpus basis. This has long been highly inadvisable due to the increasing complexity
of the system, but from version 3.2.0 onwards, it is no longer possible. So your final step, if and only
if you have made any such modifications, is to review your old settings.inc.php files (from your
backup created as per above!) and double-check the effects of the loss of your manual tweaks. Some
of them may be replicable through the usual administrative tools described in the rest of this manual.

If you never manually edited any of the settings files, then you have nothing to do under this step.

16.7 Updating to version 3.2.4

When you update to version 3.2.4 all users who are currently logged in will be automatically logged
out. This is due to a change in the database format regarding the storage of login tokens.

16.8 Updating to version 3.2.6

Running the database upgrade script for the update to 3.2.6 can take a long while, especially if you
are updating a server with lots and lots of users, or if CQPweb has been installed for a very long time.
DO NOT abort the update script - let it run to completion. If you abort it before it has finished, your
database may end up in a half-and-half state, in which case it would become very difficult to repair it
without losing some of your users’ data.

16.9 Updating to version 3.2.23

In version 3.2.23, the limit on how large a file a user can upload was changed from a single global
value (hardcoded as 2 MB) to a configurable privilege.

This means that, having upgraded to 3.2.23 or higher, you will need to use the Admin Control Panel
(see 3) to add at least one privilege of this sort to your system, and assign it to users/groups.

The three default privileges of this sort are for file size limits of 0.5 MB, 1 MB, and 2 MB.

At least one privilege of this sort should normally be assigned to the “everybody” group, or else these
users will not be able to upload files at all.

16.10 Updating to version 3.2.32

In version 3.2.32, the STTR statistic was added to the information stored for corpora.

You should run the following command in order to add the STTR to your existing corpora:

php execute-cli.php update_all_missing_sttr

Be aware this can take a LONG time to run, and must only be done after you have upgraded the
database!

(A message to this effect is also printed when you run the database upgrade script.)

The STTR for new corpora will be calculated when they are installed.

This version also adds the system allowing users to install their own corpora. However, before this
is possible, you will need to set up the appropriate plugins, and assign upload and corpus creation
privileges; likewise you will need to set the $user_corpora_enabled configuration variable (see 2.3.8).

© 2020 Andrew Hardie and contributors 136

CQPweb System Administrator’s Manual 16 UPDATING CQPWEB

16.11 Updating to version 3.3.0

Various major changes were made in the move from 3.2 to 3.3.

Configuration file format: this changed in ways that may require you to modify your existing
configuration file upon update. See section 2.6.1.

Extra code files (CSS and JavaScript): these were previously to be placed in the css and jsc

folders within the main CQPweb directory. From v 3.3.0 onwards, they should instead be placed in
the extra subdirectories (that is: css/extra and jsc/extra). See 10.4.6

Plugins: PHP files for plugins are no longer directly contained in lib/plugins. Instead,
that folder contains a folder tree called builtin, which has one folder per type of plugin; e.g.
lib/plugins/builtin/CorpusInstaller.

Plugins do still need to be in lib/plugins to be used; the principle is that you should create a symlink
to just those builtin plugins that you wish to use, as follows:

cqpweb/lib/plugins > ln -s builtin/CorpusInstaller/BasicVrtInstaller.php

This system was added because, as the number of builtin plugins increased, the plugins folder became
harder to manage.

A local folder, with the same subdirectories as builtin, is provided for convenience; it is for you to
place your own plugins into. However, you can symlink (or copy) your plugins from anywhere. You
do not have to use lib/plugins/local.

See 12.

The database upgrade procedure for v 3.3.0 involves major architectural changes. It may take a
long time to run. So, it is recommended to run the process with your CQPweb server offline (see
2.3.11 on the $cqpweb_switched_off setting).

Because this is a major upgrade, it is possible to generate the SQL commands that will run during
upgrade without running them, by adding the --rehearse flag to the call to the upgrade-database
script. A second flag, --stepwise, allows you to run the upgrade a chunk at a time (you must
keep running the script repeatedly until all chunks are complete). Note that --rehearse implies
--stepwise, i.e. you can’t rehearse the second chunk until you have run the first chunk for real (and
so on).

© 2020 Andrew Hardie and contributors 137

CQPweb System Administrator’s Manual 17 GLOSSARY

17 Glossary

〈〈
turn this into an appendix

〉〉
TODO

© 2020 Andrew Hardie and contributors 138

	Installing CQPweb
	What you will need
	Your web browser
	Hardware requirements
	Installing the webscripts
	Setting up Corpus Workbench
	Setting up the Perl modules
	Setting up R
	Setting up PHP
	Setting up disk locations
	Extra security on disk locations
	AppArmor
	SELinux

	Setting up your webserver
	Overview
	Using HTTPS
	Specific webservers: Apache

	Setting up the SQL database
	Creating the database
	Known ``gotchas'' in SQL DB setup
	Using a separate computer for the SQL DB
	The SQL daemon's file access

	Creating a configuration file
	Completing setup

	The CQPweb Configuration File
	About the configuration file
	Compulsory configuration variables
	Optional configuration variables:
	Locations of programs on the system
	Web daemon features (Apache etc.))
	SQL database features (MySQL / MariaDB)
	Memory, disk cache, and other hardware resource limits
	Configuring the user interface
	Tweaking the look-and-feel
	User account creation
	User corpus system
	RSS feed control
	Error reporting
	Miscellaneous configuration options

	Using the auto-configuration script
	Using the configuration file framework
	Changes from earlier versions of CQPweb
	Changes in version 3.3
	Changes in version 3.2
	Changes in version 3.1

	The System Administrator's Interface
	Introduction
	The Admin Control Panel: Feature list
	Corpus Admin Tools: Feature list
	Corpus settings
	Manage access
	Manage text metadata
	Manage text categories
	Manage corpus XML
	Manage annotation
	Manage parallel alignment
	Manage frequency lists
	Manage visualisations
	Add corpus data
	Corpus setup notes
	Cached queries
	Cached databases
	Cached frequency lists

	Managing the CQPweb data cache
	Introduction
	Some background on the SQL system
	Explaining the different types of cached data
	Disk locations for stored data
	Moving the cache location on an existing CQPweb server
	Optimising the SQL DB for cache performance
	User-data cache sizes
	Finding and fixing cache leaks

	Administering CQPweb from the command line
	Introduction
	The main cqpweb script
	autoconfig.php
	autosetup.php
	cli-lib.php
	execute-cli.php
	force-innodb.php
	install-corpus.php
	load-pre-3.1-groups.php
	load-pre-3.1-privileges.php
	load-pre-3.2-corpsettings.php
	offline-freqlists.php
	upgrade-database.php

	Indexing corpora
	Quick checklist
	Basic concepts
	The notion of a handle
	File format for corpus data input
	Linking handles and descriptions
	Annotation
	Annotation templates
	XML
	XML templates
	The indexing process
	Using a pre-indexed corpus
	The metadata setup process
	Building frequency lists
	Linking annotation to CEQL syntax notation
	Setting up corpus access rights
	Further corpus configuration
	Putting corpora into categories

	Metadata
	Introduction
	Corpus metadata
	Text metadata
	XML metadata
	The different possible datatypes
	Free text
	Classification
	Unique ID
	ID link
	Date

	Metadata templates
	Matadata file format
	Installing metadata

	Parallel corpus data
	Introduction
	Setting up parallel corpora
	Naming alignment attributes
	Creating alignment attributes
	Registering alignment attributes with CQPweb
	How alignment attributes can be used
	Parallel corpora and user privileges

	The Common Elementary Query Language (CEQL)
	Introduction
	CEQL syntax: shorthand access to positional attributes
	The primary annotation
	The secondary annotation
	The tertiary annotation
	A side note: the Oxford Simplified Tagset
	The combination annotation

	Controlling query visualisation
	How the primary annotation affects visualisation
	Setting up an ``alternate'' view for context display
	Using position labels
	XML visualisations
	Introduction
	Creating and managing XML visualisations
	Conditional XML visualisations
	The embedded variable
	HTML allowed in XML visualisation code
	Extra code files
	Fallback visualisation methods

	Field data presentation mode
	Field data mode as a workaround for parallel corpora

	User accounts and privileges
	Basic concepts
	User accounts
	Viewing user account details
	User groups
	Privileges
	Corpus access privileges
	Frequency list privileges
	Extra runtime privileges
	Database privileges
	File upload privileges
	Upload-area filestore privileges
	The CQP binary file privilege
	Corpus installation privileges
	Creating and editing privileges

	Grants: creating and managing grants of privileges
	Running an open server
	Access to frequency lists

	Using plugins
	What is a plugin?
	Types of plugin
	Annotators
	Format Checkers
	Script Switchers
	Corpus Analysers
	Corpus Installers
	Postprocessors
	Query Analyser
	Query Downloader
	CEQL Extender

	Installing plugins
	Registering plugins
	Permissions for plugins
	Creating plugins
	Introduction to writing plugins
	Naming your plugin
	Methods your plugin must implement
	Methods you can inherit
	An API for plugin writers

	Builtin plugins
	DeleteEveryThirdHit
	BasicTokeniser
	TreeTagger
	UcrelTagger
	BasicVrtInstaller
	SimplePlaintextInstaller
	StandardToolInstaller

	User corpora
	Introduction

	Extensible CQPweb
	Introduction
	Extending CQPweb with non-PHP modules
	Overview
	Perl
	Python
	R

	CQPweb Applications

	Using the CQPweb API
	Introduction
	Structure of API HTTP requests
	Calling a function
	Parameters and types
	Structure of API HTTP responses
	Logging in and use of login tokens
	Available functions
	string get_version(void)
	string get_cwb_version(void)
	array list_api_functions(void)
	string get_api_error_info(int code)
	void log_in(string username, string password [, bool persist])
	void log_out(void)
	array fetch_freqlist([int subcorpus, string annotation, string filter, string filter_type, int freq_max, int freq_min, string sort])
	array fetch_query_history([int limit])

	Roadmap for future functions
	The CQPweb Client

	Updating CQPweb
	The update process
	Updating the database from very old versions
	Updating from version 3.0.16 to version 3.1.0
	Updating from version 3.1.7 or earlier to version 3.1.8 or later
	Updating from version 3.1.8 or earlier to version 3.1.9 or later
	Updating to version 3.2.0
	Updating to version 3.2.4
	Updating to version 3.2.6
	Updating to version 3.2.23
	Updating to version 3.2.32
	Updating to version 3.3.0

	Glossary

