cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

NAME
CQi tutorial —— how to run a CQP query

DESCRIPTION
This tutorial gves an htroduction to theCorpus Query Interface (CQi). After a short description of the
data types used by the CQi, a simple application is presented in detail. Code samplesmia giknd of
pseudo-code that should be familiar to GjaJand Perl programmers. For general information about the
CQi architecture or for a full command reference, please refer to the published documentation.

CORPORA, SUBCORPORA, AND ATTRIBUTES
In the CQi,Corpus namesare uppercase strings such as

BNC, HANSARD-EN, UP.

Subcompus namesbegin with a capital letter followed by zero or moraviycase characters (including
digits and hyphens). A fuBubcorpus identifier consists of both the name of the physical corpus and the
subcorpus name, separated by a colon:

BNC:A, UP:Last, HANSARD-EN:Collocations-1 .

Last is a special subcorpus, which contains the results of thec@®uery It will be automatically
deleted wheneer a rew query is &ecuted.

Attrib ute namesare lowercase strings. Currenttile CQi protocol defines the folling three types of
attributes (typical attribute names are shown in parentheses):

e positional attributesvford, pos, lemma)

e dtructural attributess, p, chapter)

» dignment attributesiansard—fr)

A full attribute specifier consists of corpus and attribute name, separated by a period:
BNC.word, UP.s, HANSARD-EN.hansard-fr

No distinction is made between the three types of attribugesdieg naming coventions.

DATA TYPES
The following data types are defined in the CQi specification.

BYTE / BOOL
A BYTEis an unsigned 8-bit inger A BOOLis aBYTEthat is guaranteed to be eitlte(False) or 1
(True).

WORD
A WORDis an unsigned 16-bit irger. WORDquantities are used only in the client-serv
communication streams. As a command or response cMI®RIX interpreted as a sequence ob tw
BYTEs.

INT An INT is a signed 32-bit ingeer It is the standard numerical data type used by the CQi. When
transmitted through a byte-stream connectionNah must be sent imetwork (i.e. big-endian) byte
order.

STRING
A STRINGIs a sequence BYTEs. Although CQISTRINGs ae not null-terminated, thg must not
containNULL bytes. Internallya STRINGof length n is transmitted as

WORD n
BYTE <character_1>

BYTE <character_n>

Since the characters irSARINGare unsigned bytes, valid character codes range from 1 to 255.

CQi v1.0 alpha 2001-03-09 1

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

BYTE_LIST, BOOL_LIST, INT_LIST, STRING_LIST
These are tharray data types\ailable in the CQi. In this tutorial, the elements of an array variable

STRING_LIST a
are represented as
al0], a[1], ..., a[n-1]
where
n = size(a)
is the size of the arrajnternally array data types are transmitted as the sequence

INT n
STRING a[0]
STRING a[1]

STRING a[n-1]

for string arrays, and correspondingly for other types of array.

CQi FUNCTIONS
The CQi functions are ganised ingroups. All function names in a group share a common prefix. In the
following, all groups of functions are listed. The asteriskig a daceholder for the'ihdividual” part of a
function name.

CQIL_CTRL_*
General and administraé functions, mainly used for logging in to and out of the server.

CQI_ASK_FEATURE_*
The functions in this group are used to find out which parts and versions of the CQi protocol are
supported by a server.

CQI_CORPUS_*
Corpus manager functions. Used to listvailable corpora and their attibtes (e.qg.
CQI_CORPUS_LIST_CORPORA() and to obtain additional information on the corpora (e.g.
CQI_CORPUS_FULL_NAME())

CQlLCL_*
The functions in this group providewelevel access to corpora (i.e. direct access to tiblen
sequence, lexicon, and index of attributes). Most of these functions correspond taCibius Library
functions and ha& dmilar names. A number of functions from this group (including
CQI_CL_CPOS2STR() andCQI_CL_REGEX2ID()) will be used in the example program helo

CQI_CQP_*
This group contains all query processor functions. The most important function is
CQIl_CQP_QUERY/() which executes acQPquery The group also includes all subcorpus operations
(e.g. CQI_CQP_DUMP_SUBCORPUY)

PSEUDO CODE
The pseudo code in this tutorial uses control structures similar to those found in C, Perlaaridl Ja
variables used in the code examples are declared as one of the CQi data types.

INT_LIST a
STRING full_name, corpus, subcorpus

Special functions or operators such as

size(a)
full_name = concatenate(corpus, ":", subcorpus)

should be selfsgplanatory Comments begin with a double slagh J. Constant string values are enclosed
in double quotes

CQi v1.0 alpha 2001-03-09 2

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

STRING a = "simple"
whereas arrays are delimited by square brackets whemlgerally:
STRING_LIST b = [a, "simpler"”, "simplest"]

Each CQi function takes a certain number of arguments (shown in parentheses following the function
name) and returns a single value (of the data type specified in the CQi documentation). Thus, a typical CQi
function call is written as

STRING corpus_name
STRING_LIST subcorpora
subcorpora = CQI_CQP_LIST_SUBCORPORA(corpus_name)

in pseudo code. All CQi functions may return an error code instead of their ratuen i is assumed here
that some la-level component in the client library recognises error codes returned by tlee aad/raises
an exception, so that no explicit error checking is needed in the examples.

Some CQi functions do not Y& a eturn value. The merely return a status or error code. Such function
calls appear in void context in the pseudo code examples:

CQIl_CQP_QUERY(mother, subcorpus, query)

It is assumed that the program will abort if the quescetion fails (e.g. if there is a syntax error in the
query). Real-wrld applications should identifiy the status or error code returned by such functions, and
distinguish between mere syntax seaution errors and other (non-reeoable) errors.

Finally, some functions return integer lists of fixed size (pairs or quadruples). Such return values are
assigned to tuples of variables using the special syntax shown belo

/I start & end positions of 3457th sentence in the BNC corpus

(from, to) = CQI_CL_STRUC2CPOS("BNC.s", 3456)

/I boundaries of the 114th alignment block in the hansards

(f1, t1, f2, t2) = CQI_CL_ALG2CPOS("HANSARD-EN.hansard—fr", 113)

Most actual programming languages will require more complicated code to handle tuples as return values.

AN EXAMPLE PROPLEM
This section contains a step-by-step guide showimgtbo

» establish a CQi connection

* execute aCQPquery

e access the resulting subcorpus

» display matches with part-of-speech annotations

* look up word forms in the corpus index

» get low-level access to the positional, structural, and alignment attributes of a corpus

Our pseudo-code example program will run the feitgy CQP query on theBNCcorpus and display the
first ten matches with part-of-speech annotations.

(Q) interested’ [pos="PRP’] [pos="AT0']? [pos="AJO’]* @[pos="NN."]

Then, a list of nhouns appearing in tiaeget field (marlked @ will be produced. Finallyour program will
look up words matching the regular expression

(R) (over|under)estimate.*

in the HANSARD-EMorpus (the English part of the Canadian parliamentary debates), and display the
sentences containing these words together with their French translations (from the HAN®RARD-FR
corpus).

CQi v1.0 alpha 2001-03-09 3

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

Step 1: Establishing a CQi connection

A CQi session is initiated with th€QI_CTRL_CONNECT()command, which xpects specifyingiser
name andpassword as arguments.

/I 'demo’ user; password is _not_ encrypted
CQI_CTRL_CONNECT("demo", "secret")

A passvord is alvays required. Server administrators wishing to grant wmais access should create an
'anonymous’ user with the empty string as password.

When the connection has been established, the client should check whether the CQi server supports all
required features.

BOOL ok_cqi, ok _cl, ok_cqgp

/I version numbers of the first cqpserver release:
/I CQi specification v1.0

ok_cqi = CQI_ASK_FEATURE_CQI_1_0()

/I corpus access functions CL v2.3

ok_cl = CQI_ASK_FEATURE_CL_2_3()

/I CQP v2.3 corpus queries

ok_cqp = CQI_ASK_FEATURE_CQP_2_3()

Future releases of the CQi specification may define additional features and version numbers.

Step 2: Listing available corpora and attributes

A CQi client will usually want to present a list ofadable corpora and, for each corpus, a list of its
attributes to the use®ur example program uses hard-coded corpus and attribute names. A maneextlv
version of this program should check whether the hard-coded corpus and attributes adatatyoeder to
avad raising an exception.

STRING_LIST corpora
corpora = CQl_CORPUS_LIST_CORPORA()
/I check here if BNC is in the list of available corpora

After selecting a corpus, a listing of its (positional and structural) attributes should be obtained.

STRING_LIST p_att, s_att

p_att = CQI_CORPUS_POSITIONAL_ATTRIBUTES("BNC")
s_att = CQI_CORPUS_STRUCTURAL_ATTRIBUTES("BNC")
/I check here if word, lemma, pos, and s attributes are defined

We will be using the standantord (word form),pos (part-of-speech class), atemma attributes, plus
the structural attrilte s (sentence boundaries) here. Every compust have aword attribute, but one or
more of the other'standard’ attributes may be absent, so client applications showldyal check the
attribute lists before proceeding.

Finally, CQI_CORPUS_FULL_NAME() CQI_CORPUS_INFO(), etc. provide some more information
on a corpus (see CQi documentation for detail$)e size of a corpus, i.e. the number of tokens in the, te
can be obtained using therd attribute:

INT size
size = CQI_CL_ATTRIBUTE_SIZE("BNC.word")
Step3: Executing aCQP query and accessing the result

TheCQI_CQP_QUERY()command expects three argumentsorgus or subcorpus on which the query is
executed; asubcorpus name in which the query result will be stored; an€@P query string (see theCQP
manual for syntax). The following CQi pseudo corecates query (Q) on tHgNC corpus.

CQi v1.0 alpha 2001-03-09 4

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

STRING query
qguery = "interested’ [pos='"PRP’] [pos="AT0’]? [pos="AJ0’']* @[pos="NN."]"
CQIl_CQP_QUERY("BNC", "Results", query)
If the query was »ecuted sucessfullythe results are mo stored in theBNC:Results subcorpus. The
command

STRING_LIST bnc_sub
bnc_sub = CQI_CQP_LIST_SUBCORPORA("BNC")

returns the subcorpus nanesst andResults

A CQi subcorpuscan be interpreted as a table where eashcmresponds to one query match. The total
number of matches is

INT nr_matches = CQI_CQP_SUBCORPUS_SIZE("BNC:Results")
printf "%d matches.\n", nr_matches

In our xample,nr_matches is 2324. TheBNC:Results subcorpus contains 3 columns, which are called
fields:

match field position of first token in the match
matchend field position of last token in the match
target field position of token matching the marked (@) pattern

The match andmatchend fields are alays present. Applications that do not use hard-coded queries need to
check whether gnother fields are defined.

BOOL $match_ok, $matchend_ok, $target_ok
/I these two are always True
$match_ok =

CQI_CQP_SUBCORPUS_HAS_FIELD("BNC:Results", CQl_CONST_FIELD_MATCH)
$matchend_ok =

CQI_CQP_SUBCORPUS_HAS_FIELD("BNC:Results", CQI_CONST_FIELD_MATCHEND)
/Il $target_ok is True if the the query contained an @-marked pattern
$target_ok =

CQI_CQP_SUBCORPUS_HAS_FIELD("BNC:Results", CQl_CONST_FIELD_TARGET)

We will just display the first 10 matches in the subcorpus, i.e. we need tovedr@first 10 entries from
each field (column). Matches are numbered beginning with 0, so we request entries 0 through 9.

INT_LIST match, match_end, target

match = CQI_CQP_DUMP_SUBCORPUS(
"BNC:Results",
CQI_CONST_FIELD_MATCH,
0,9)

matchend = CQI_CQP_DUMP_SUBCORPUS(
"BNC:Results",
CQI_CONST_FIELD_MATCHEND,
0,9)

target = CQI_CQP_DUMP_SUBCORPUS(
"BNC:Results",
CQI_CONST_FIELD_TARGET,
0,9)

In our example, the table printed by the following code

CQi v1.0 alpha 2001-03-09 5

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

INT i
printf "match\tm-end\ttarget\n"
printf " \t \t \n"

for (i=0; i<5; i++) {

}

printf "%d\t%d\t%d\n", match[i], matchend][i], target]i]

will look lik e this:

Each

match m-end target

45837 45839 45839
45885 45888 45888
54987 54989 54989
68633 68636 68636
73562 73565 73565

number in this table iscarpus position i.e. the sequential number of the corresponding token in the

BNCcorpus. In the next step, we will usevitevel corpus access functions to reteehe query matches as

plain

text.

Step 4: Displaying the matches

Each
table

CQI_

takes
functi

match of the query is a sequence of consecatipus positions.For instance, the first match in the

abwe onsists of the tokens numbered 45837, 45838, and 45839. WiV use the
CL_CPOS2STR() function to obtain the tokens at thev@i corpus positions. Since this function

a list of corpus position as its second argument, we can access all tokens in a match with a single
on call. The entire code needed to print the first 10 matches is shown belo

INT i
STRING_LIST tokens, pos_tokens
for (i=0; i<10; i++) {

}

printf "%2d. ", (i+1)
/l'[x .. y] creates a list of integers ranging from x to y
tokens = CQI_CL_CPOS2STR("BNC.word", [match[i] .. matchend][i]])
/I now get part—-of-speech tags (BNC.pos attribute)
pos_tokens = CQI_CL_CPOS2STR("BNC.pos", [match[i] .. matchend][i]])
/I print tokens with part-of-speech annotations
for (j=0; j<size(tokens); j++) {
printf "%s/%s ", tokens[j], pos_tokens]j]

}
printf "\n"

The output printed by this code example will loolelikis:

O©COoO~NOOOUTE, WNPE

10.

Finall
field),

. interested/AJO in/PRP form/NN1

. interested/AJO in/PRP the/ATO context/NN1
. interested/AJO in/PRP art/NN1

. interested/AJO in/PRP a/ATO picture/NN1

. interested/AJO in/PRP the/ATO market/NN1
. interested/VVN in/PRP copies/NN2

. interested/AJO in/PRP the/ATO subject/NN1
. interested/AJO in/PRP action/NN1

. interested/AJO in/PRP film/NN1
interested/AJO in/PRP film/NN1

y, we want to get the full list of lemma annotations of the radriokens (i.e. the entries in ttaeget
which can be used to compute the frequelistribution of nouns appearing in the target position of

CQi v1.0 alpha 2001-03-09 6

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

query (Q).

INT i

INT_LIST target
STRING token
STRING_LIST temp

/[use -1 .. =1 to dump entire subcorpus
target = CQI_CQP_DUMP_SUBCORPUS(
"BNC:Results",
CQI_CONST_FIELD_TARGET,
-1, -1)
for (i=0; i<size(target); i++) {
/I -1 in target field means target was not set in this match
/I (although this cannot happen in our case)
if (target[i] == -1) {
token = "<undef>"

}
else {
/I CQI_CL_CPOS2STR() operates on lists, so we must pass a
/I a single corpus position as a one—element list. Note that
/I the return value is a list as well.
temp = CQI_CL_CPOS2STR("BNC.lemma", [target[i]])
token = temp]0]
}
/I now insert <token> into frequency list or print

}

Step 5: Low-level corpus access

In the last part of our tutorial, we will sivchow to get direct access to thiadex andlexicon of positional
attributes and he to compute sentence boundaries and alignment blocks.

All values of a positional attribute are stored inléscon with unique numeri¢Ds (but not in alphabetical
order). W& can look up theD(s) of one or more words with tf@QIl CL_STR2ID() function.

INT_LIST id
id = CQIl_CL_STR2ID("HANSARD-EN.word", ["interesting", "fripping"])

In this ekample,id[1] is -1, which means the word foriinipping was not found in theHANSARD-EN
corpus. Lexicon entries matching a veyi regular expression can be obtained with the
CQI_CL_REGEX2ID() function. Note that unli& in the previous example, the seconduement is a
single regular expression rather than a list, whereas the return value is stillggn ligie(because the
regular expression will usually matchveral lexicon entries).

INT_LIST id
STR_LIST word_form
INT i

/I <id> holds the IDs of word forms matching regular expression (R)

id = CQl_CL_REGEX2ID("HANSARD-EN.word", "(under|over)estimate.*")
/I retrieve the corresponding word forms

word_form = CQI_CL_ID2STR("HANSARD-EN.word", id)

printf "%d word forms match /(under|over)estimate.*/:\n", size(word_form)
for (i=0; i<size(word_form); i++) {
printf " —— %s\n", word_form[i]

}

CQi v1.0 alpha 2001-03-09 7

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

The output printed by the example abahould look like this:

6 word forms match /(under|over)estimate.*/:
—— underestimate
—— underestimated
—— underestimates
—— overestimated
—— overestimate
—— overestimates

Using the list of IDs, we can molook up these word forms in the indef the HANSARD-EN.word
attribute.

INT_LIST cpos
STRING_LIST temp

/I <cpos> is a sorted list of corpus positions —— for a single word
/[form the CQI_CL_ID2CPOS() function is faster
cpos = CQI_CL_IDLIST2CPOS("HANSARD-EN.word", id);

/I print first ten tokens in HANSARD-EN matching (R)

for (i=0; i<10; i++) {
/I temp]0] is the token at corpus position cposi]
temp = CQIl_CL_CPOS2STR("HANSARD-EN.word", cposJi])
printf "%7d: %s\n", cposJi], temp|[0]

}

This code produces the following (or similar) output:

27627: underestimate
608702: underestimated
1589347: underestimated
1606570: underestimates
1787174: overestimated
2013493: underestimated
2420116: underestimate
2495773: underestimated
3295899: overestimated
3459443:; underestimate
3795709: underestimate

The next piece of sample code uses structural atstio display the first ten sentences containingentok
that matches the regular expression (Rxtctural attrib ute is a sequence of norv@lapping, but not
necessarily adjacent regions in a corpus (similaB@/L regions). In our gample, we assume that
sentences in thelANSARD-ENorpus are encoded in the structural attebHANSARD-EN.s The
regions of a structural attribute are numberedjif@ing with 0. The number of sentences in the
HANSARD-ERorpus is

INT n
n = CQI_CL_ATTRIBUTE_SIZE("HANSARD-EN.s")

For each token in thepos array the code belw first computes the number of the sentence containing that
token, and then it obtains the start and end position of that sentence in the token sequence.

INT start, end, i, j
INT_LIST sentence
STRING_LIST tokens

sentence = CQI_CL_CPOS2STRUC("HANSARD-EN.s", cpos);
for (i=0; i<size(sentence); i++) {

CQiv1.0 alpha 2001-03-09 8

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

/I -1 means that the token at position cpos]i] is not contained
/l'in an <s>..</s> region —> skip this match
if (sentence[i] == -1) {
printf "%7d: <no sentence found>\n", cposli]
}

else {
/I <start> is the number of the first token in the sentence
/I <end> is the number of the last token in the sentence
(start, end) = CQI_CL_STRUC2CPOS("HANSARD-EN.s", sentence]i])
/I note that the 2nd argument is _not_ a list!

Il get tokens from <start> to <end> and print the sentence
tokens = CQI_CL_CPOS2STR("HANSARD-EN.word", [start .. end])
printf "%7d;: <s>"
for (j=0; j<size(tokens); j++) {
printf "%s ", tokensj]
}
printf "</s>\n"
}
}

Finally, we will determine regions in thelANSARD-FRorpus that are aligned to these sentences. The
name of thaalignment attribute corresponds to the name of the aligned corpus, hencewethaccess

the HANSARD-EN.hansard-fr attribute. Like dructural regions, alignment blocks are numbered
beginning with 0. All output code is omitted from the following example.

INT s1, s2,t1, t2, i
INT_LIST alignment

alignment = CQIl_CL_CPOS2ALG("HANSARD-EN.hansard-fr", cpos);
for (i=0; i<size(alignment); i++) {
if (alignment[i] == -1) {
/l -1 means that no alignment block was found for this token
}

else {
(s1, s2,t1,t2) = CQIl_CL_ALG2CPOS("HANSARD-EN.hansard-fr", alignment[i])
/l meaning that the region [s1 .. s2] in HANSARD-EN is aligned
/l to the region [t1 .. t2] in HANSARD-FR; [s1 .. s2] contains
/I the token at corpus position cposJi], i.e. sl <= cpos]i] <=s2

}

}
COPYRIGHT
(C) 2000 Stefan EvertMS Stuttgart).

IMS Corpus VérkBench (C)1993-2000QMS Stuttgart.

CQi v1.0 alpha 2001-03-09 9

