
cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

NAME
CQi tutorial −− how to run a CQP query

DESCRIPTION
This tutorial gives an introduction to theCorpus Query Interface (CQi). After a short description of the
data types used by the CQi, a simple application is presented in detail. Code samples are given in a kind of
pseudo-code that should be familiar to C, Java, and Perl programmers. For general information about the
CQi architecture or for a full command reference, please refer to the published documentation.

CORPORA, SUBCORPORA, AND ATTRIBUTES
In the CQi,Corpus namesare uppercase strings such as

BNC, HANSARD−EN, UP.

Subcorpus namesbegin with a capital letter followed by zero or more lowercase characters (including
digits and hyphens). A fullsubcorpus identifier consists of both the name of the physical corpus and the
subcorpus name, separated by a colon:

BNC:A, UP:Last, HANSARD−EN:Collocations−1 .

Last is a special subcorpus, which contains the results of the lastCQP query. It will be automatically
deleted whenever a new query is executed.

Attrib ute namesare lowercase strings. Currently, the CQi protocol defines the following three types of
attributes (typical attribute names are shown in parentheses):

• positional attributes (word, pos, lemma)

• structural attributes (s, p, chapter)

• alignment attributes (hansard−fr)

A full attribute specifier consists of corpus and attribute name, separated by a period:

BNC.word, UP.s, HANSARD−EN.hansard−fr

No distinction is made between the three types of attributes regarding naming conventions.

DATA T YPES
The following data types are defined in the CQi specification.

BYTE / BOOL
A BYTEis an unsigned 8−bit integer. A BOOLis aBYTEthat is guaranteed to be either0 (False) or 1
(True).

WORD
A WORDis an unsigned 16−bit integer. WORDquantities are used only in the client-server
communication streams. As a command or response code, aWORDis interpreted as a sequence of two
BYTEs.

INT An INT is a signed 32−bit integer. It is the standard numerical data type used by the CQi. When
transmitted through a byte-stream connection, anINT must be sent innetwork (i.e. big-endian) byte
order.

STRING
A STRING is a sequence ofBYTEs. Although CQiSTRINGs are not null-terminated, they must not
containNULLbytes. Internally, aSTRINGof length n is transmitted as

WORD n
BYTE <character_1>
...
BYTE <character_n>

Since the characters in aSTRINGare unsigned bytes, valid character codes range from 1 to 255.

CQi v1.0 alpha 2001-03-09 1

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

BYTE_LIST, BOOL_LIST, INT_LIST, STRING_LIST
These are thearray data types available in the CQi. In this tutorial, the elements of an array variable

STRING_LIST a

are represented as

a[0], a[1], ... , a[n−1]

where

n = s ize(a)

is the size of the array. Internally, array data types are transmitted as the sequence

INT n
STRING a[0]
STRING a[1]
...
STRING a[n−1]

for string arrays, and correspondingly for other types of array.

CQi FUNCTIONS
The CQi functions are organised ingroups. All function names in a group share a common prefix. In the
following, all groups of functions are listed. The asterisk (*) is a placeholder for the ‘‘individual’’ part of a
function name.

CQI_CTRL_*
General and administrative functions, mainly used for logging in to and out of the server.

CQI_ASK_FEATURE_*
The functions in this group are used to find out which parts and versions of the CQi protocol are
supported by a server.

CQI_CORPUS_*
Corpus manager functions. Used to list available corpora and their attributes (e.g.
CQI_CORPUS_LIST_CORPORA()), and to obtain additional information on the corpora (e.g.
CQI_CORPUS_FULL_NAME()).

CQI_CL_*
The functions in this group provide low-level access to corpora (i.e. direct access to thetoken
sequence, lexicon, and index of attributes). Most of these functions correspond to theCorpus Library
functions and have similar names. A number of functions from this group (including
CQI_CL_CPOS2STR() andCQI_CL_REGEX2ID()) will be used in the example program below.

CQI_CQP_*
This group contains all query processor functions. The most important function is
CQI_CQP_QUERY(), which executes aCQPquery. The group also includes all subcorpus operations
(e.g. CQI_CQP_DUMP_SUBCORPUS()).

PSEUDO CODE
The pseudo code in this tutorial uses control structures similar to those found in C, Perl, and Java. All
variables used in the code examples are declared as one of the CQi data types.

INT_LIST a
STRING full_name, corpus, subcorpus

Special functions or operators such as

size(a)
full_name = concatenate(corpus, ":", subcorpus)

should be self-explanatory. Comments begin with a double slash (//). Constant string values are enclosed
in double quotes

CQi v1.0 alpha 2001-03-09 2

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

STRING a = "simple"

whereas arrays are delimited by square brackets when given literally:

STRING_LIST b = [a, "simpler", "simplest"]

Each CQi function takes a certain number of arguments (shown in parentheses following the function
name) and returns a single value (of the data type specified in the CQi documentation). Thus, a typical CQi
function call is written as

STRING corpus_name
STRING_LIST subcorpora
subcorpora = CQI_CQP_LIST_SUBCORPORA(corpus_name)

in pseudo code. All CQi functions may return an error code instead of their return value. It is assumed here
that some low-level component in the client library recognises error codes returned by the server and raises
an exception, so that no explicit error checking is needed in the examples.

Some CQi functions do not have a return value. They merely return a status or error code. Such function
calls appear in void context in the pseudo code examples:

CQI_CQP_QUERY(mother, subcorpus, query)

It is assumed that the program will abort if the query execution fails (e.g. if there is a syntax error in the
query). Real-world applications should identifiy the status or error code returned by such functions, and
distinguish between mere syntax or execution errors and other (non-recoverable) errors.

Finally, some functions return integer lists of fixed size (pairs or quadruples). Such return values are
assigned to tuples of variables using the special syntax shown below.

// start & end positions of 3457th sentence in the BNC corpus
(from, to) = CQI_CL_STRUC2CPOS("BNC.s", 3456)
// boundaries of the 114th alignment block in the hansards
(f1, t1, f2, t2) = CQI_CL_ALG2CPOS("HANSARD−EN.hansard−fr", 113)

Most actual programming languages will require more complicated code to handle tuples as return values.

AN EXAMPLE PROPLEM
This section contains a step-by-step guide showing how to

• establish a CQi connection

• execute aCQPquery

• access the resulting subcorpus

• display matches with part-of-speech annotations

• look up word forms in the corpus index

• get low-level access to the positional, structural, and alignment attributes of a corpus

Our pseudo-code example program will run the following CQP query on theBNCcorpus and display the
first ten matches with part-of-speech annotations.

(Q) ’interested’ [pos=’PRP’] [pos=’AT0’]? [pos=’AJ0’]* @[pos=’NN.’]

Then, a list of nouns appearing in thetarget field (marked @) will be produced. Finally, our program will
look up words matching the regular expression

(R) (over|under)estimate.*

in the HANSARD−ENcorpus (the English part of the Canadian parliamentary debates), and display the
sentences containing these words together with their French translations (from the alignedHANSARD−FR
corpus).

CQi v1.0 alpha 2001-03-09 3

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

Step 1: Establishing a CQi connection

A CQi session is initiated with theCQI_CTRL_CONNECT()command, which expects specifyinguser
name andpassword as arguments.

// ’demo’ user; password is _not_ encrypted
CQI_CTRL_CONNECT("demo", "secret")

A password is always required. Server administrators wishing to grant anonymous access should create an
’anonymous’ user with the empty string as password.

When the connection has been established, the client should check whether the CQi server supports all
required features.

BOOL ok_cqi, ok_cl, ok_cqp
// version numbers of the first cqpserver release:
// CQi specification v1.0
ok_cqi = CQI_ASK_FEATURE_CQI_1_0()
// corpus access functions CL v2.3
ok_cl = CQI_ASK_FEATURE_CL_2_3()
// CQP v2.3 corpus queries
ok_cqp = CQI_ASK_FEATURE_CQP_2_3()

Future releases of the CQi specification may define additional features and version numbers.

Step 2: Listing available corpora and attributes

A CQi client will usually want to present a list of available corpora and, for each corpus, a list of its
attributes to the user. Our example program uses hard-coded corpus and attribute names. A more advanced
version of this program should check whether the hard-coded corpus and attributes actually exist in order to
avoid raising an exception.

STRING_LIST corpora
corpora = CQI_CORPUS_LIST_CORPORA()
// check here if BNC is in the list of available corpora

After selecting a corpus, a listing of its (positional and structural) attributes should be obtained.

STRING_LIST p_att, s_att
p_att = CQI_CORPUS_POSITIONAL_ATTRIBUTES("BNC")
s_att = CQI_CORPUS_STRUCTURAL_ATTRIBUTES("BNC")
// check here if word, lemma, pos, and s attributes are defined

We will be using the standardword (word form),pos (part-of-speech class), andlemma attributes, plus
the structural attribute s (sentence boundaries) here. Every corpusmust have aword attribute, but one or
more of the other ‘‘standard’’ attributes may be absent, so client applications should always check the
attribute lists before proceeding.

Finally, CQI_CORPUS_FULL_NAME(), CQI_CORPUS_INFO(), etc. provide some more information
on a corpus (see CQi documentation for details).Thesize of a corpus, i.e. the number of tokens in the text,
can be obtained using theword attribute:

INT size
size = CQI_CL_ATTRIBUTE_SIZE("BNC.word")

Step3: Executing aCQP query and accessing the result

TheCQI_CQP_QUERY()command expects three arguments: acorpus or subcorpus on which the query is
executed; asubcorpus name in which the query result will be stored; and aCQPquery string (see theCQP
manual for syntax). The following CQi pseudo code executes query (Q) on theBNC corpus.

CQi v1.0 alpha 2001-03-09 4

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

STRING query
query = "’interested’ [pos=’PRP’] [pos=’AT0’]? [pos=’AJ0’]* @[pos=’NN.’]"
CQI_CQP_QUERY("BNC", "Results", query)

If the query was executed sucessfully, the results are now stored in theBNC:Results subcorpus. The
command

STRING_LIST bnc_sub
bnc_sub = CQI_CQP_LIST_SUBCORPORA("BNC")

returns the subcorpus namesLast andResults .

A CQi subcorpuscan be interpreted as a table where each row corresponds to one query match. The total
number of matches is

INT nr_matches = CQI_CQP_SUBCORPUS_SIZE("BNC:Results")
printf "%d matches.\n", nr_matches

In our example,nr_matches is 2324. TheBNC:Results subcorpus contains 3 columns, which are called
fields:

match field position of first token in the match
matchend field position of last token in the match
target field position of token matching the marked (@) pattern

Thematch andmatchend fields are always present. Applications that do not use hard-coded queries need to
check whether any other fields are defined.

BOOL $match_ok, $matchend_ok, $target_ok
// these two are always True
$match_ok =

CQI_CQP_SUBCORPUS_HAS_FIELD("BNC:Results", CQI_CONST_FIELD_MATCH)
$matchend_ok =

CQI_CQP_SUBCORPUS_HAS_FIELD("BNC:Results", CQI_CONST_FIELD_MATCHEND)
// $target_ok is True if the the query contained an @−marked pattern
$target_ok =

CQI_CQP_SUBCORPUS_HAS_FIELD("BNC:Results", CQI_CONST_FIELD_TARGET)

We will just display the first 10 matches in the subcorpus, i.e. we need to retrieve the first 10 entries from
each field (column). Matches are numbered beginning with 0, so we request entries 0 through 9.

INT_LIST match, match_end, target
match = CQI_CQP_DUMP_SUBCORPUS(

"BNC:Results",
CQI_CONST_FIELD_MATCH,
0, 9)

matchend = CQI_CQP_DUMP_SUBCORPUS(
"BNC:Results",
CQI_CONST_FIELD_MATCHEND,
0, 9)

target = CQI_CQP_DUMP_SUBCORPUS(
"BNC:Results",
CQI_CONST_FIELD_TARGET,
0, 9)

In our example, the table printed by the following code

CQi v1.0 alpha 2001-03-09 5

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

INT i
printf "match\tm−end\ttarget\n"
printf "−−−−−\t−−−−−\t−−−−−−\n"
for (i=0; i<5; i++) {

printf "%d\t%d\t%d\n", match[i], matchend[i], target[i]
}

will look lik e this:

match m−end target
−−−−− −−−−− −−−−−−
45837 45839 45839
45885 45888 45888
54987 54989 54989
68633 68636 68636
73562 73565 73565

Each number in this table is acorpus position, i.e. the sequential number of the corresponding token in the
BNCcorpus. In the next step, we will use low-level corpus access functions to retrieve the query matches as
plain text.

Step 4: Displaying the matches

Each match of the query is a sequence of consecutive corpus positions.For instance, the first match in the
table above consists of the tokens numbered 45837, 45838, and 45839. We will use the
CQI_CL_CPOS2STR() function to obtain the tokens at the given corpus positions. Since this function
takes a list of corpus position as its second argument, we can access all tokens in a match with a single
function call. The entire code needed to print the first 10 matches is shown below.

INT i
STRING_LIST tokens, pos_tokens
for (i=0; i<10; i++) {

printf "%2d. ", (i+1)
// [x .. y] creates a list of integers ranging from x to y
tokens = CQI_CL_CPOS2STR("BNC.word", [match[i] .. matchend[i]])
// now get part−of−speech tags (BNC.pos attribute)
pos_tokens = CQI_CL_CPOS2STR("BNC.pos", [match[i] .. matchend[i]])
// print tokens with part−of−speech annotations
for (j=0; j<size(tokens); j++) {

printf "%s/%s ", tokens[j], pos_tokens[j]
}
printf "\n"

}

The output printed by this code example will look like this:

1. interested/AJ0 in/PRP form/NN1
2. interested/AJ0 in/PRP the/AT0 context/NN1
3. interested/AJ0 in/PRP art/NN1
4. interested/AJ0 in/PRP a/AT0 picture/NN1
5. interested/AJ0 in/PRP the/AT0 market/NN1
6. interested/VVN in/PRP copies/NN2
7. interested/AJ0 in/PRP the/AT0 subject/NN1
8. interested/AJ0 in/PRP action/NN1
9. interested/AJ0 in/PRP film/NN1

10. interested/AJ0 in/PRP film/NN1

Finally, we want to get the full list of lemma annotations of the marked tokens (i.e. the entries in thetarget
field), which can be used to compute the frequency distribution of nouns appearing in the target position of

CQi v1.0 alpha 2001-03-09 6

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

query (Q).

INT i
INT_LIST target
STRING token
STRING_LIST temp

// use −1 .. −1 to dump entire subcorpus
target = CQI_CQP_DUMP_SUBCORPUS(

"BNC:Results",
CQI_CONST_FIELD_TARGET,
−1, −1)

for (i=0; i<size(target); i++) {
// −1 in target field means target was not set in this match
// (although this cannot happen in our case)
if (target[i] == −1) {

token = "<undef>"
}
else {

// CQI_CL_CPOS2STR() operates on lists, so we must pass a
// a single corpus position as a one−element list. Note that
// the return value is a list as well.
temp = CQI_CL_CPOS2STR("BNC.lemma", [target[i]])
token = temp[0]

}
// now insert <token> into frequency list or print

}

Step 5: Low-level corpus access

In the last part of our tutorial, we will show how to get direct access to theindex andlexicon of positional
attributes and how to compute sentence boundaries and alignment blocks.

All values of a positional attribute are stored in itslexicon with unique numericIDs (but not in alphabetical
order). We can look up theID(s) of one or more words with theCQI_CL_STR2ID() function.

INT_LIST id
id = CQI_CL_STR2ID("HANSARD−EN.word", ["interesting", "fripping"])

In this example,id[1] is −1, which means the word formfripping was not found in theHANSARD−EN
corpus. Lexicon entries matching a given regular expression can be obtained with the
CQI_CL_REGEX2ID() function. Note that unlike in the previous example, the second argument is a
single regular expression rather than a list, whereas the return value is still an integer list (because the
regular expression will usually match several lexicon entries).

INT_LIST id
STR_LIST word_form
INT i

// <id> holds the IDs of word forms matching regular expression (R)
id = CQI_CL_REGEX2ID("HANSARD−EN.word", "(under|over)estimate.*")
// retrieve the corresponding word forms
word_form = CQI_CL_ID2STR("HANSARD−EN.word", id)

printf "%d word forms match /(under|over)estimate.*/:\n", size(word_form)
for (i=0; i<size(word_form); i++) {

printf " −− %s\n", word_form[i]
}

CQi v1.0 alpha 2001-03-09 7

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

The output printed by the example above should look like this:

6 word forms match /(under|over)estimate.*/:
−− underestimate
−− underestimated
−− underestimates
−− overestimated
−− overestimate
−− overestimates

Using the list of IDs, we can now look up these word forms in the index of the HANSARD−EN.word
attribute.

INT_LIST cpos
STRING_LIST temp

// <cpos> is a sorted list of corpus positions −− for a single word
// form the CQI_CL_ID2CPOS() function is faster
cpos = CQI_CL_IDLIST2CPOS("HANSARD−EN.word", id);

// print first ten tokens in HANSARD−EN matching (R)
for (i=0; i<10; i++) {

// temp[0] is the token at corpus position cpos[i]
temp = CQI_CL_CPOS2STR("HANSARD−EN.word", cpos[i])
printf "%7d: %s\n", cpos[i], temp[0]

}

This code produces the following (or similar) output:

27627: underestimate
608702: underestimated

1589347: underestimated
1606570: underestimates
1787174: overestimated
2013493: underestimated
2420116: underestimate
2495773: underestimated
3295899: overestimated
3459443: underestimate
3795709: underestimate

The next piece of sample code uses structural attributes to display the first ten sentences containing a token
that matches the regular expression (R). Astructural attrib ute is a sequence of non-overlapping, but not
necessarily adjacent regions in a corpus (similar toSGML regions). In our example, we assume that
sentences in theHANSARD−ENcorpus are encoded in the structural attribute HANSARD−EN.s. The
regions of a structural attribute are numbered beginning with 0. The number of sentences in the
HANSARD−ENcorpus is

INT n
n = CQI_CL_ATTRIBUTE_SIZE("HANSARD−EN.s")

For each token in thecpos array, the code below first computes the number of the sentence containing that
token, and then it obtains the start and end position of that sentence in the token sequence.

INT start, end, i, j
INT_LIST sentence
STRING_LIST tokens

sentence = CQI_CL_CPOS2STRUC("HANSARD−EN.s", cpos);
for (i=0; i<size(sentence); i++) {

CQi v1.0 alpha 2001-03-09 8

cqi_tutorial(3) CQi Documentation cqi_tutorial(3)

// −1 means that the token at position cpos[i] is not contained
// in an <s>..</s> region −> skip this match
if (sentence[i] == −1) {

printf "%7d: <no sentence found>\n", cpos[i]
}
else {

// <start> is the number of the first token in the sentence
// <end> is the number of the last token in the sentence
(start, end) = CQI_CL_STRUC2CPOS("HANSARD−EN.s", sentence[i])
// note that the 2nd argument is _not_ a list!

// get tokens from <start> to <end> and print the sentence
tokens = CQI_CL_CPOS2STR("HANSARD−EN.word", [start .. end])
printf "%7d: <s> "
for (j=0; j<size(tokens); j++) {

printf "%s ", tokens[j]
}
printf "</s>\n"

}
}

Finally, we will determine regions in theHANSARD−FRcorpus that are aligned to these sentences. The
name of thealignment attribute corresponds to the name of the aligned corpus, hence we have to access
the HANSARD−EN.hansard−fr attribute. Like structural regions, alignment blocks are numbered
beginning with 0. All output code is omitted from the following example.

INT s1, s2, t1, t2, i
INT_LIST alignment

alignment = CQI_CL_CPOS2ALG("HANSARD−EN.hansard−fr", cpos);
for (i=0; i<size(alignment); i++) {

if (alignment[i] == −1) {
// −1 means that no alignment block was found for this token

}
else {

(s1, s2, t1, t2) = CQI_CL_ALG2CPOS("HANSARD−EN.hansard−fr", alignment[i])
// meaning that the region [s1 .. s2] in HANSARD−EN is aligned
// to the region [t1 .. t2] in HANSARD−FR; [s1 .. s2] contains
// the token at corpus position cpos[i], i.e. s1 <= cpos[i] <= s2

}
}

COPYRIGHT
(C) 2000 Stefan Evert (IMS Stuttgart).

IMS Corpus WorkBench (C)1993−2000IMS Stuttgart.

CQi v1.0 alpha 2001-03-09 9

